积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(701)综合其他(347)Weblate(263)Python(234)数据库(140)Java(136)云计算&大数据(119)系统运维(90)Spring(86)Julia(77)

语言

全部英语(1182)中文(简体)(198)中文(繁体)(11)日语(6)德语(5)西班牙语(4)俄语(4)法语(3)韩语(3)

格式

全部PDF文档 PDF(1051)其他文档 其他(352)TXT文档 TXT(18)DOC文档 DOC(7)PPT文档 PPT(2)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Weblate
  • Python
  • 数据库
  • Java
  • 云计算&大数据
  • 系统运维
  • Spring
  • Julia
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 德语
  • 西班牙语
  • 俄语
  • 法语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 BRAND BOOK VERSION 1.0

    BRAND BOOK VERSION 1.0 PAGE 2 V 1.0 GO BRAND BOOK Go is an open source programming language that enables the production of simple, efficient and reliable software at scale. { PAGE 3 V 1.0 GO BRAND BRAND BOOK // contents the brand 05 06 07 08 1.0 mission & vision 1.1 values 1.2 tone of voice 1.3 audience & key messages visual identity 13 14 16 17 2.0 logo overview 22 2.0 the gopher 2.0.1 model sheet 1 2 3 PAGE 4 V 1.0 GO BRAND BOOK the brand // section one GO BRAND BOOK V 1.0 PAGE 5 Bring order to the complexity of creating and running software
    0 码力 | 23 页 | 651.68 KB | 1 年前
    3
  • pdf文档 BRAND BOOK VERSION 1.0

    BRAND BOOK VERSION 1.0 PAGE 2 V 1.0 GO BRAND BOOK Go is an open source programming language that enables the production of simple, efficient and reliable software at scale. { PAGE 3 V 1.0 GO BRAND BRAND BOOK // contents the brand 05 06 07 08 1.0 mission & vision 1.1 values 1.2 tone of voice 1.3 audience & key messages visual identity 13 14 15 16 17 2.0 logo 22 2.0 the gopher 2.0.1 model sheet 1 2 3 PAGE 4 V 1.0 GO BRAND BOOK the brand // section one GO BRAND BOOK V 1.0 PAGE 5 Bring order to the complexity of creating and running software
    0 码力 | 23 页 | 1.16 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Chapter 1 - Introduction to Efficient Deep Learning Welcome to the book! This chapter is a preview of what to expect in the book. We start off by providing an overview of the state of deep learning, its and IoT devices over time. The lighter blue bars represent forecasts. (Data Source: 1, 2) In this book, we will primarily focus on efficiency for both training and deploying efficient deep learning models one without hurting the other? This is illustrated in Figure 1-6. As mentioned earlier, with this book we’ll strive to build a set of tools and techniques that can help us make models pareto-optimal and
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    to compute the score matrix such as the Luong23 style and the Bahdanau24 style attention. In this book, we have chosen to discuss the Luong algorithm because it is used in Tensorflow’s attention layers
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    quantized values for a given x. Logistics We just wanted to take a moment to state that in this book, we have chosen to work with Tensorflow 2.0 (TF) because it has exhaustive support for building and are not familiar with the tensorflow framework, we refer you to the book Deep Learning with Python1. All the code examples in this book are available at the EDL GitHub repository. The code examples for all frequently operate on batches of data. Using vectorized operations also speeds up the execution (and this book is about efficiency, after all!). We highly recommend learning and becoming familiar with numpy.
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    machine learning frameworks like Tensorflow and PyTorch is pending as of the time of writing this book. Mainly what is lacking is kernels that can efficiently leverage the compressed weight matrices on
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 nim book v2, Chapter 3. Rendering Text

    0 码力 | 6 页 | 74.05 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    18 Allgower, Eugene L. and Kurt Georg. Numerical Continuation Methods. Springer, link.springer.com/book/10.1007/978-3-642-61257-2. 1. The epoch at which the model first learns to correctly predict the
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
BRANDBOOKVERSION1.0EfficientDeepLearningBookEDLChapterAutomationIntroductionArchitecturesTechniquesCompressionAdvancednimbookv2RenderingTextTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩