积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)综合其他(5)后端开发(3)产品与服务(3)系统运维(1)C++(1)人工智能(1)笔试面试(1)网络与安全(1)

语言

全部中文(简体)(10)英语(6)

格式

全部PDF文档 PDF(16)DOC文档 DOC(1)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 综合其他
  • 后端开发
  • 产品与服务
  • 系统运维
  • C++
  • 人工智能
  • 笔试面试
  • 网络与安全
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Embracing an Adversarial Mindset for Cpp Security

    Embracing an Adversarial Mindset for C++ Security Amanda Rousseau 9/18/2024 This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY1 SUMMARY1. Adversarial Scenarios 2. Vulnerability Trends 3. Exploits in the Wild 4. Strategies for Secure C++ DevelopmentWHOAMI 0x401006 Microsoft 0x40100C Offensive 0x40100F Research & Security 0x401018 Tackling cross-org issues to combat a whole bug class 15% ● Writing tools to help with discovery 4%Adversarial Mindset Not taught in traditional institutionsThinking Like an Adversary Challenging assumptions
    0 码力 | 92 页 | 3.67 MB | 5 月前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    com/applied-deep-learning-part-3-autoencoders- 1c083af4d798 https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-1- autoencoder-d9a5f8795af4 How to Train? PCA V.S. Auto-Encoders ▪ PCA, which 4da4bfc5 Adversarial AutoEncoders ▪ Distribution of hidden code https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-2- exploring-latent-space-with-adversarial-2d53a6f8a4f9 f9 Adversarial AutoEncoders ▪ Give more details after GAN https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-2- exploring-latent-space-with-adversarial-2d53a6f8a4f9 Another
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    and introduce techniques like Synthetic Minority Oversampling Technique16 (SMOTE) and Generative Adversarial Network17 (GAN) which can generate synthetic data for images. While SMOTE leverages statistical synthesized. The rightmost is the synthesized image for class 0. 17 Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems 27 (2014). 16 Chawla, Nitesh V., et al over time to be increasingly sophisticated agents. Figure 3-15: Architecture of a Generative Adversarial Network (GAN). It has three phases: discriminator training, generator training and the synthetic
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 02 Scientific Reading and Writing - Introduction to Scientific Writing WS2021/22

    Scientific Reading [Graham Cormode: How NOT to review a paper: the tools and techniques of the adversarial reviewer. SIGMOD Rec. 37(4) 2008] This paper leaves many questions unanswered. Some claims are datasets  Conclusions  Disagree w/ every claim; future work can be dismissed Scientific Reading Adversarial Paper Summary This paper attempts to address the well- studied problem of Graticule Optimization
    0 码力 | 26 页 | 613.57 KB | 1 年前
    3
  • pdf文档 2021 中国开源年度报告

    cloud-hypervisor/cloud-hypervisor 172 1035 1062 915 10 Trusted-AI/adversarial-robustness-toolbox 495.1682899579140 1046 1283 10 Trusted-AI/adversarial- robustness-toolbox 228 305 687 272 11 JanusGraph/janusgraph cloud-hypervisor/cloud-hypervisor 172 1035 1062 915 10 Trusted-AI/adversarial-robustness-toolbox 495.1682899579140 1046 1283 10 Trusted-AI/adversarial- robustness-toolbox 228 305 687 272 11 JanusGraph/janusgraph
    0 码力 | 132 页 | 14.24 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    Metz 和 S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015. 预览版202112 第11章 循环神经网络 人工智能的强力崛起,可能是人类历史上最好的事 情,也可能是最糟糕的事情。−史蒂芬•霍金 实现非常简单,通过在网络层 中插入 Dropout 层即可实现网络连接的随机断开。 12.3.3 Adversarial Auto-Encoder 为了能够方便地从某个已知的先验分布中?(?)采样隐藏变量?,方便利用?(?)来重建输 入,对抗自编码器(Adversarial Auto-Encoder)利用额外的判别器网络(Discriminator,简称 D 网络)来判定降维的隐藏变量 预览版202112 第13章 生成对抗网络 我不能创造的事物,我就还没有完全理解它。−理查 德·費曼 在生成对抗网络(Generative Adversarial Network,简称 GAN)发明之前,变分自编码器 被认为是理论完备,实现简单,使用神经网络训练起来很稳定,生成的图片逼近度也较 高,但是人眼还是可以很轻易地分辨出真实图片与机器生成的图片。
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    Information Huge State and Action Space Long-Term Planning Temporal and Spatial Reasoning Adversarial Real-time Strategy Multiagent Cooperation StarCraft AI Research and Competitions Classic
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 56. 深度学习:GAN

    ▪ Painter or Generator: ▪ Critic or Discriminator https://towardsdatascience.com/generative-adversarial-networks-explained- 34472718707a How to train? https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN
    0 码力 | 42 页 | 5.36 MB | 1 年前
    3
  • word文档 DevOps Meetup

    Development began to see operational issues, and usability problems  The relationship is less adversarial and more supportive.  Individuals are cross-trained on each other’s concerns – empathy  Combined
    0 码力 | 2 页 | 246.04 KB | 5 月前
    3
  • pdf文档 人工智能发展史

    ca/~vincentp/ift3395/lectures/backprop_old.pdf GAN:2014 https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf BigGAN https://arxiv.org/pdf/1809.11096.pdf Ian Goodfellow ▪ How I fail https://veronikach
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
EmbracinganAdversarialMindsetforCppSecurity深度学习PyTorch入门实战54AutoEncoder编码码器编码器EfficientDeepLearningBookEDLChapterTechniques02ScientificReadingandWritingIntroductiontoWS2021222021中国开源年度报告年度报告深度学习星际争霸星际争霸人工智能人工智能56GANDevOpsMeetup发展发展史
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩