积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1124)综合其他(394)Weblate(302)Java(278)Python(273)云计算&大数据(257)Spring(227)数据库(198)C++(122)系统运维(112)

语言

全部英语(1575)中文(简体)(387)中文(繁体)(24)日语(17)德语(16)西班牙语(16)法语(15)韩语(15)俄语(14)英语(7)

格式

全部PDF文档 PDF(1563)其他文档 其他(505)TXT文档 TXT(21)PPT文档 PPT(10)DOC文档 DOC(3)
 
本次搜索耗时 0.538 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Weblate
  • Java
  • Python
  • 云计算&大数据
  • Spring
  • 数据库
  • C++
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 德语
  • 西班牙语
  • 法语
  • 韩语
  • 俄语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • text文档 00 Deepseek官方提示词

    0 码力 | 4 页 | 7.93 KB | 7 月前
    3
  • pdf文档 00 课程简介 杨亮 《PHP语⾔程序设计》

    0 码力 | 12 页 | 2.58 MB | 1 年前
    3
  • pdf文档 Adventures in SIMD Thinking (Part 2 of 2)

    Character Runs – SSE Example 72 CppCon 2020 - Adventures in SIMD Thinking 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 zero zero = _mm_set1_epi8(0) LSB MSBCopyright © 2020 Bob Steagall K E W B 6F 72 64 20 CE BA E1 BD B9 47 72 65 65 6B 20 77 6F 72 64 20 CE BA E1 BD B9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 zero memory chunk chunk = _mm_loadu_si128((__m128i const*) pSrc) pSrc LSB BD B9 zero memory chunk mask mask = _mm_movemask_epi8(chunk) LSB MSB 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 0000 0001 1111 0000 0000 0000 0000Copyright © 2020 Bob Steagall K E W
    0 码力 | 135 页 | 551.08 KB | 5 月前
    3
  • pdf文档 Firebird Internals: Inside a Firebird Database

    ULONG reserved; }; pag_type One byte, signed. Byte 0x00 on the page. This byte defines the page type for the page. Valid page types are: 0x00 Undefined page. You should never see this in a database Each transaction is represented by a pair of bits in a bitmap. Valid values in these two bits are: 00 this transaction is active. 01 this transaction is in limbo. 10 this transaction is dead. 11 this using SQL dialect 3. hdr_read_only 0x200 (bit 9) Database is in read only mode. hdr_backup_mask 0xC00 (bits 10 and 11) Indicates the current backup mode. hdr_shutdown_mask (bit two of two) 0x1080
    0 码力 | 63 页 | 261.00 KB | 1 年前
    3
  • pdf文档 百度智能云 Apache Doris 文档

    ['1000-01-01', '9999-12-31']。默认的打印形式是’YYYY-MM-DD’。 DATETIME数据类型 DATETIME数据类型 范围: ['1000-01-01 00:00:00', '9999-12-31 00:00:00']。默认的打印形式是’YYYY-MM-DD HH:MM:SS’。 CHAR数据类型 CHAR数据类型 范围: char[(length)],定长字符串,长度length范围1~255,默认为1。 +--------------------------------+ +--------------------------------+ | 2011-01-01 00:00:00 | | 2011-01-01 00:00:00 | +--------------------------------+ +--------------------------------+ insert into into tbl1 tbl1 select select ** from from empty_tbl empty_tbl;; Query OK Query OK,, 00 rows rows affected affected ((0.02 0.02 sec sec)) Query OK Query OK 0 rows affected 0 rows affected
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    station_london datetime 2019-05-07 02:00:00 NaN NaN 23.0 2019-05-07 03:00:00 50.5 25.0 19.0 2019-05-07 04:00:00 45.0 27.7 19.0 2019-05-07 05:00:00 NaN 50.4 16.0 2019-05-07 06:00:00 NaN 61.9 NaN Note: The usage station_london datetime 2019-05-07 02:00:00 NaN NaN 23.0 2019-05-07 03:00:00 50.5 25.0 19.0 2019-05-07 04:00:00 45.0 27.7 19.0 2019-05-07 05:00:00 NaN 50.4 16.0 2019-05-07 06:00:00 NaN 61.9 NaN How to create 2019-05-07 02:00:00 NaN NaN 23.0 43. ˓→286 2019-05-07 03:00:00 50.5 25.0 19.0 35. ˓→758 2019-05-07 04:00:00 45.0 27.7 19.0 35. ˓→758 2019-05-07 05:00:00 NaN 50.4 16.0 30. ˓→112 2019-05-07 06:00:00 NaN 61
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    station_london datetime 2019-05-07 02:00:00 NaN NaN 23.0 2019-05-07 03:00:00 50.5 25.0 19.0 2019-05-07 04:00:00 45.0 27.7 19.0 2019-05-07 05:00:00 NaN 50.4 16.0 2019-05-07 06:00:00 NaN 61.9 NaN Note: The usage station_london datetime 2019-05-07 02:00:00 NaN NaN 23.0 2019-05-07 03:00:00 50.5 25.0 19.0 2019-05-07 04:00:00 45.0 27.7 19.0 2019-05-07 05:00:00 NaN 50.4 16.0 2019-05-07 06:00:00 NaN 61.9 NaN How to create 2019-05-07 02:00:00 NaN NaN 23.0 43. ˓→286 2019-05-07 03:00:00 50.5 25.0 19.0 35. ˓→758 2019-05-07 04:00:00 45.0 27.7 19.0 35. ˓→758 2019-05-07 05:00:00 NaN 50.4 16.0 30. ˓→112 2019-05-07 06:00:00 NaN 61
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    to_datetime("2015-11-18 15:30:00+05:30") Out[2]: Timestamp('2015-11-18 10:00:00') In [3]: pd.Timestamp("2015-11-18 15:30:00+05:30") Out[3]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)') timezone) In [4]: pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"]) Out[4]: DatetimeIndex(['2015-11-18 10:00:00', '2015-11-18 10:00:00'], dtype= ˓→'datetime64[ns]', freq=None) New [56]: pd.to_datetime("2015-11-18 15:30:00+05:30") Out[56]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)') In [57]: pd.Timestamp("2015-11-18 15:30:00+05:30") \\\\\\\\\\\\\\\\\\\\\\\\\\\
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    ˓→'datetime64[ns]', freq=None) The default is set at origin='unix', which defaults to 1970-01-01 00:00:00, which is commonly called ‘unix epoch’ or POSIX time. This was the previous default, so this is 0 0.384316 foo 2013-01-01 00:00:00 1 1.574159 foo 2013-01-01 00:00:01 2 1.588931 foo 2013-01-01 00:00:02 3 0.476720 foo 2013-01-01 00:00:03 4 0.473424 foo 2013-01-01 00:00:04 The default is to infer 0 0.384316 foo 2013-01-01 00:00:00 1 1.574159 foo 2013-01-01 00:00:01 2 1.588931 foo 2013-01-01 00:00:02 3 0.476720 foo 2013-01-01 00:00:03 4 0.473424 foo 2013-01-01 00:00:04 In [32]: df["A"].to_pickle("s1
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    ˓→'datetime64[ns]', freq=None) The default is set at origin='unix', which defaults to 1970-01-01 00:00:00, which is commonly called ‘unix epoch’ or POSIX time. This was the previous default, so this is 0 0.384316 foo 2013-01-01 00:00:00 1 1.574159 foo 2013-01-01 00:00:01 2 1.588931 foo 2013-01-01 00:00:02 3 0.476720 foo 2013-01-01 00:00:03 4 0.473424 foo 2013-01-01 00:00:04 The default is to infer 0 0.384316 foo 2013-01-01 00:00:00 1 1.574159 foo 2013-01-01 00:00:01 2 1.588931 foo 2013-01-01 00:00:02 3 0.476720 foo 2013-01-01 00:00:03 4 0.473424 foo 2013-01-01 00:00:04 In [32]: df["A"].to_pickle("s1
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
00Deepseek官方提示课程简介杨亮PHP程序设计程序设计AdventuresinSIMDThinkingPartofFirebirdInternalsInsideDatabase百度智能ApacheDoris文档pandaspowerfulPythondataanalysistoolkit1.10.240.20
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩