积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(157)云计算&大数据(51)综合其他(45)机器学习(39)数据库(35)区块链(34)Python(31)系统运维(22)前端开发(19)TiDB(16)

语言

全部中文(简体)(286)英语(25)中文(繁体)(13)zh-cn(1)中文(简体)(1)

格式

全部PDF文档 PDF(293)其他文档 其他(27)PPT文档 PPT(9)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 329 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • 机器学习
  • 数据库
  • 区块链
  • Python
  • 系统运维
  • 前端开发
  • TiDB
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • zh-cn
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-线性代数回顾

    2021年07月 机器学习-线性代数回顾 黄海广 副教授 2 目录 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 3 1.行列式 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 4 (1) 设? = 05 矩阵的特征值和特征向量 04 线性方程组 7 ? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵, 简记为?,或者 ??? ?×? 。若? = ?,则称?是?阶矩阵或?阶方阵。 2.矩阵 矩阵 8 矩阵的线性运算 2.矩阵 1.矩阵的加法 设? = ( 矩阵的特征值和特征向量 04 线性方程组 15 3.向量 1.有关向量组的线性表示 (1) ?1, ?2, ⋯ , ??线性相关 ⇔至少有一个向量可以用其余向量线性表示。 (2) ?1, ?2, ⋯ , ??线性无关,?1, ?2, ⋯ , ??,?线性相关 ⇔ ?可以由?1, ?2, ⋯ , ??唯一线性表示。 (3) ?可以由?1, ?2, ⋯ , ??线性表示 ⇔ ?(?1, ?2
    0 码力 | 39 页 | 856.89 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09机器学习-支持向量机

    机器学习-支持向量机 黄海广 副教授 2 本章目录 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 3 1.支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 ( Support Vector learning)方式对数据进行二元分类的广义线性 分类器(generalized linear classifier),其决 策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane) 。 与逻辑回归和神经网络相比,支持向量机,在学 习复杂的非线性方程时提供了一种更为清晰,更 加强大的方式。 支持向量 距离 5 1.支持向量机概述 硬间隔、软间隔和非线性 SVM 假如 假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向 量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的
    0 码力 | 29 页 | 1.51 MB | 1 年前
    3
  • pdf文档 菟葵 - 在 Krita 中复现 SAI 的图层混合模式 - 2020-11-24A

    层混合模式在保存为 PSD,然后用 PS 打开,就 可以看见那个 sai 中使用“发光”的图层变成了“线性减淡(添加)”。 sai→ps 甚至图层名后面还有个奇怪的图标,那个图标是去掉混合选项中“透明形状图层”的勾选后才会出现的。 据以上可得 sai 的“发光”图层混合模式=ps 的“线性减淡(添加)”图层混合模式去掉混合选项里“透明形状图 层”的勾选。 然后对着 krita 里的图层右键 adobe 官网关于“线性减淡(添加)”图层混合模式的说明 https://helpx.adobe.com/cn/photoshop/using/blending-modes.html 线性减淡(添加) 查看每个通道中的颜色信息,并通过增加亮度使基色变亮以反映混合色。与黑色混合则不发生变化。 据此两条可得,在黑色图层上绘画就等于去掉“透明形状图层”勾选,并且黑色不会影响“线性减淡 (添加)”图层混合模式。 的“发光”图层混合模式=ps 的“线性减淡(添加)”图层混合模式去掉混合选项里“透明形状图 层”的勾选。=krita 里新建一个图层填充黑色在改成“线性减淡-添加”图层混合模式然后在上面绘制(也 可以是图层组用“线性减淡-添加”图层混合模式,里面两个正常图层,下面那个填充黑色)=krita 的 “发光(sai)”图层混合模式 注意:krita 中的相加(或叫相加-线性减淡)=线性减淡-添加,也就是线性减淡(添加) 注意
    0 码力 | 14 页 | 257.52 KB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Java版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10. 查找算法 152 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.2. 二分查找 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 186 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 JavaScript版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10. 查找算法 151 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 function algorithm_A(n) { console.log(0); } // 算法 B 时间复杂度:线性阶 function 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 185 页 | 14.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Swift版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10. 查找算法 155 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithmA(n: Int) { print(0) } // 算法 B 时间复杂度:线性阶 func algorithmB(n: 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 TypeScript 版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10. 查找算法 151 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.2. 二分查找 算法 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为「常数阶」。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A A 时间复杂度:常数阶 function algorithm_A(n: number): void { console.log(0); } // 算法 B 时间复杂度:线性阶 function algorithm_B(n: number): void { for (let i = 0; i < n; i++) { console.log(0); } } // 算法 C 时间复杂度:常数阶
    0 码力 | 186 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10. 查找算法 153 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. 二分查找 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Python版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10. 查找算法 145 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 # 算法 A 时间复杂度:常数阶 def algorithm_A(n): print(0) # 算法 B 时间复杂度:线性阶 def algorithm_B(n): 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 178 页 | 14.67 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Golang版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10. 查找算法 155 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 时间复杂度:线性阶 func algorithm_B(n 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
共 329 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 33
前往
页
相关搜索词
机器学习课程温州大学线性代数线性代数回顾09支持向量菟葵Krita复现SAI图层混合模式20201124AHello算法1.00b1JavaJavaScriptSwiftTypeScriptC++PythonGolang
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩