机器学习课程-温州大学-08机器学习-集成学习
1 2022年12月 机器学习-集成学习 黄海广 副教授 2 本章目录 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 3 1.集成学习方法概述 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 4 Bagging 结果进行综合产生最终的预测结果: 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 最终 预测 结果 测试 数据 5 Boosting 训练过程为阶梯状,基模型 按次序一一进行训练(实现 上可以做到并行),基模型 的训练集按照某种策略每次 都进行一定的转化。对所有 基模型预测的结果进行线性 综合产生最终的预测结果。 集成学习 模型n 最终 预测 预测 结果 模型2 预测n …… 预测1 预测2 转化 模型1 模型3 转化 转化 训练 数据 测试 数据 6 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 第二 层数 据 Stacking 最终 预测 结果 Stacking 将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训0 码力 | 50 页 | 2.03 MB | 1 年前3机器学习课程-温州大学-05深度学习-深度学习实践
1 2023年03月 深度学习-深度学习实践 黄海广 副教授 2 01 数据集划分 02 数据集制作 03 数据归一化/标准化 04 正则化 05 偏差和方差 本章目录 3 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 验证集(Validation Set):也叫做开发集( Dev 确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 三者划分:训练集、验证集、测试集 机器学习:60%,20%,20%;70%,10%,20% 深度学习:98%,1%,1% (假设百万条数据) 数据集划分 数据集 训练集 验证集 测试集 4 交叉验证 1. 使用训练集训练出10个模型 2. 用10个模型分别对交叉验证集 的样本能够让模型学习 到更多更有效的特征,减小噪声的影响。 2.降维 即丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。0 码力 | 19 页 | 1.09 MB | 1 年前3机器学习课程-温州大学-05机器学习-机器学习实践
1 2022年02月 机器学习-机器学习实践 黄海广 副教授 2 01 数据集划分 02 评价指标 03 正则化、偏差和方差 本章目录 3 01 数据集划分 02 评价指标 1.数据集划分 03 正则化、偏差和方差 4 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 三者划分:训练集、验证集、测试集 机器学习:60%,20%,20%;70%,10%,20% 深度学习:98%,1%,1% (假设百万条数据) 1.数据集划分 数据集 训练集 验证集 测试集 5 交叉验证 1. 使用训练集训练出k个模型 2. 用k个模型分别对交叉验证集计算得 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试集计算得出 推广误差(代价函数的值) 6 数据不平衡是指数据集中各类样本数量不均衡的情况. 常用不平衡处理方法有采样和代价敏感学习 采样欠采样、过采样和综合采样的方法 不平衡数据的处理 7 SMOTE(Synthetic Minority Over-sampling Technique)算法是过采样 中比较常用的一种。算0 码力 | 33 页 | 2.14 MB | 1 年前3机器学习课程-温州大学-01深度学习-引言
2023年03月 深度学习-引言 黄海广 副教授 2 本章目录 01 深度学习概述 02 神经网络的基础 03 深度学习的背景知识 04 深度学习的开发流程 3 1. 深度学习概述 01 深度学习概述 02 神经网络的基础 03 深度学习的背景知识 04 深度学习的开发流程 4 深度学习与机器学习、人工智能的关系 人工智能:机器展现的人类智能 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 用此模型预测未来的一种方法。 深度学习:实现机器学习的一种 技术 5 杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 深度学习界的执牛耳者 Andrew Ng 中文名吴恩达,斯坦福大学副教 现任字节跳动科技有限公司人 工智能实验室总监,北京大学、南京 大学客座教授,IEEE 会士,ACM 杰 出科学家,CCF 高级会员。 代表作:《统计学习方法》 国内泰斗 周志华,南京大学计算机科学与技 术系主任 、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。0 码力 | 80 页 | 5.38 MB | 1 年前3机器学习课程-温州大学-02机器学习-回归
1 2022年09月 机器学习-第二章 回归 黄海广 副教授 2 本章目录 01 线性回归 02 梯度下降 03 正则化 04 回归的评价指标 3 1. 线性回归 01 认识Python 01 线性回归 02 梯度下降 03 正则化 04 回归的评价指标 4 监督学习分为回归和分类 ✓ 回归(Regression、Prediction) ? 代表训练集中样本的数量 ? 代表特征的数量 ? 代表特征/输入变量 ? 代表目标变量/输出变量 ?, ? 代表训练集中的样本 (?(?), ?(?)) 代表第?个观察样本 ℎ 代表学习算法的解决方案或函 数也称为假设(hypothesis) ෝ? = ℎ(?),代表预测的值 ? ? 是特征矩阵中的第?行,是一个向量。 上图的: ?? ? 代表特征矩阵中第 ? 行的第 ? 0?0 + ?1?1 + ?2?2+. . . +????=?T? 注意:若表达式 ℎ ? = ?0 + ?1?1 + ?2?2+. . . +???? + ?, 则?可以融入到?0 模型 机器学习算法 训练数据 特征 预测结果 8 线性回归-算法流程 ℎ ? = ?0 + ?1?1 + ?2?2 + . . . +???? 要找到一组 ?(?0, ?1, ?2, . . . ,0 码力 | 33 页 | 1.50 MB | 1 年前3机器学习课程-温州大学-01机器学习-引言
2022年02月 机器学习-引言 黄海广 副教授 2 目录 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 3 1. 机器学习概述 01 认识Python 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 4 机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 用此模型预测未来的一种方法。 深度学习:实现机器学习的一种 技术 人工智能 机器学习 深度学习 5 杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 Andrew 出科学家,CCF 高级会员。 代表作:《统计学习方法》 机器学习界的国内泰斗 周志华,南京大学计算机科学与技 术系主任 、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 机器学习界的青年才俊 何恺明,本科就读于清华大学,博士毕业于0 码力 | 78 页 | 3.69 MB | 1 年前3机器学习课程-温州大学-15深度学习-GAN
深度学习-生成式深度学习 黄海广 副教授 2 03 GAN 的应用 本章目录 01 生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景 3 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景 1.生成式深度学习简介 4 深度学习中常见生成式模型 中的池化层 将全连接层以全局池化层替代以减轻计算量。 1.生成式深度学习简介 5 自编码(AE)结构图 1.生成式深度学习简介 6 变分自编码(VAE)结构图 1.生成式深度学习简介 7 变分自编码(VAE)生成图像 1.生成式深度学习简介 8 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景 GAN的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗 学习的方式来训练. 目的是估测数据样本的潜在分布并生成新的数据样本。 2. GAN的理论与实现模型 10 概念简介 提出背景 GAN的概念简介及提出背景 2001年,Tony Jebara 在毕业论文中以最大熵 形式将判别模型与生成 模型结合起来联合学习 2007年,Zhuowen Tu 提出将基 于boosting分类器的判别模型与0 码力 | 35 页 | 1.55 MB | 1 年前3机器学习课程-温州大学-13深度学习-Transformer
1 2023年05月 深度学习-Transformer 黄海广 副教授 2 03 Transformer的训练 本章目录 01 Transformer介绍 02 Transformer的工作流程 04 BERT 3 1.Transformer介绍 01 Transformer介绍 03 Transformer的训练 02 Transformer的工作流程 使用位置编码表示序列的顺序 到目前为止,我们对模型的描述缺少了 一种理解输入单词顺序的方法。 为了解决这个问题,Transformer为每个 输入的词嵌入添加了一个向量。这些向 量遵循模型学习到的特定模式,这有助 于确定每个单词的位置,或序列中不同 单词之间的距离。这里的直觉是,将位 置向量添加到词嵌入中使得它们在接下 来的运算中,能够更好地表达的词与词 之间的距离。 34 工作,它之后就是Softmax层。 线性变换层是一个简单的全连接神经网络,它可 以把解码组件产生的向量投射到一个比它大得多 的、被称作对数几率(logits)的向量里。 不妨假设我们的模型从训练集中学习一万个不同 的英语单词(我们模型的“输出词表”)。因此 对数几率向量为一万个单元格长度的向量——每个 单元格对应某一个单词的分数。 接下来的Softmax 层便会把那些分数变成概率(都 为正数、上限10 码力 | 60 页 | 3.51 MB | 1 年前3机器学习课程-温州大学-机器学习项目流程
1 2021年06月 机器学习-机器学习项目流程 黄海广 副教授 2 本章目录 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 3 1.机器学习项目流程概述 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 4 机器学习的一般步骤 5 机器学习的一般步骤 数据搜集 数据清洗 数据清洗 特征工程 数据建模 6 机器学习的一般步骤 数据搜集 数据清洗 特征工程 数据建模 • 基于性能指标比较几种机 器学习模型 • 对最佳模型执行超参数调 整 • 在测试集上评估最佳模型 • 解释模型结果 • 得出结论 • 数据清理和格式化 • 探索性数据分析(EDA) • 特征工程 • 特征选择 • 网络下载 • 网络爬虫 • 数据库读取 • 开放数据 • …… …… 7 2.数据清洗 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 8 2.数据清洗 什么是数据清洗? 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包 括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后 的数据清理一般是由计算机而不是人工完成。 9 2.数据清洗 不合法值 空 值 异常检测0 码力 | 26 页 | 1.53 MB | 1 年前3机器学习课程-温州大学-09深度学习-目标检测
1 2023年04月 深度学习-目标检测 黄海广 副教授 2 01 目标检测概述 02 目标检测算法 03 YOLO算法 04 Faster RCNN算法 本章目录 3 01 目标检测概述 1.目标检测概述 02 目标检测算法 03 YOLO算法 04 Faster RCNN算法 4 1.目标检测概述 分类(Classification) 分类(Classification) 即是将图像结构化为某一 类别的信息,用事先确定 好的类别(string)或实例ID 来描述图片。这一任务是 最简单、最基础的图像理 解任务,也是深度学习模 型最先取得突破和实现大 规模应用的任务。 检测(Detection) 分类任务关心整体,给出的 是整张图片的内容描述,而 检测则关注特定的物体目标 ,要求同时获得这一目标的 类别信息和位置信息。 分割(Segmentation) 类间相似性(inter-class similarity) 1.目标检测概述 10 1.目标检测概述 学术和工业界主要将目标检测算法分成三类: 1.传统的目标检测框架 2.基于深度学习的Two Stages目标检测框架 (准确度有优势) 3.基于深度学习的One Stage目标检测框架 (速度有优势) 11 1.目标检测概述 1.传统的目标检测框架 (1)候选区域选择(采用不同尺寸、比例的滑动窗口对图像进行遍历);0 码力 | 43 页 | 4.12 MB | 1 年前3
共 803 条
- 1
- 2
- 3
- 4
- 5
- 6
- 81