這些年,我們一起追的Hadoop
In-Memory Process 來處理 Compliant with ANSI-92 SQL Standard,所以透過 Cloudera ODBC Driver for Impala,就可以跟既有的 BI/DW 工具整合 52 / 74 Presto Facebook 主導,2012 年秋天開始發展,2013 年春天開始推 廣,作為 Facebook Data Warehouse 的 Query 切入:使用介面無障礙 從 Hive 切入:SQL 跟 HiveQL 很接近 從 Impala 切入:Hive 的競爭對手,大家都支援 ANSI-SQL 從 Sqoop 切入:善用 JDBC 的經驗,整合 RDBMS/BI/DW 從 HBase 切入:學習 NoSQL ... 63 / 74 MySQL Hadoop Applier 直接讀取 MySQL 的 Binary Log Event,透過 libhdfs0 码力 | 74 页 | 45.76 MB | 1 年前3Julia 1.11.4
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference0 码力 | 2007 页 | 6.73 MB | 3 月前3Julia 1.11.5 Documentation
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference0 码力 | 2007 页 | 6.73 MB | 3 月前3Julia 1.11.6 Release Notes
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference0 码力 | 2007 页 | 6.73 MB | 3 月前3julia 1.13.0 DEV
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2058 页 | 7.45 MB | 3 月前3Julia 1.12.0 RC1
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2057 页 | 7.44 MB | 3 月前3Julia 1.12.0 Beta4
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2057 页 | 7.44 MB | 3 月前3Julia 1.12.0 Beta3
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2057 页 | 7.44 MB | 3 月前3julia 1.12.0 beta1
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 173 # this is wrong, since depending on the return value # of type-inference0 码力 | 2047 页 | 7.41 MB | 3 月前3julia 1.10.10
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * biCHAPTER 12. METHODS 163 ## this is insufficient because it assumes `one(eltype(a))` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 1692 页 | 6.34 MB | 3 月前3
共 21 条
- 1
- 2
- 3