Debian 新維護人員手冊
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 conffiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . echo 10 > debian/compat 在特定場景下,你可以在需要相容舊版本系統時使用相容等級 9。然而,我們不建議你使用任何低於 9 的相容等級,在 新建軟體包時也應避免使用這些低的等級。 5.3 conffiles 關於軟件有件很惱人的事,就是當你付出了很多時間和精力來自定義一個程序,但是升級後所有的修改都被覆蓋掉了。 Debian 通過將配置文件單獨標記來解決這個問題,1 當軟件包升級0 码力 | 63 页 | 512.12 KB | 1 年前3Comprehensive Rust(繁体中文)
. 24 5.2 變數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 算術 . . 20,證明變數預設為不可變動。如要允許變更,請加入 mut 關鍵字。 • 這裡的 i32 是變數型別。這是編譯器必須在編譯期間掌握的資訊,但透過型別推斷 (稍後會說明), 程式設計師在許多情況下都能省略其型別宣告。 5.3 值 以下列出一些基本的內建型別,以及適用於各型的字面常量的語法。 類型 常值 帶號整數 i8、i16、i32、i64、i128、isize -10、0、1_000、123_i64 非帶號整數0 码力 | 358 页 | 1.41 MB | 10 月前3julia 1.10.10
26 5.2 Boolean Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Bitwise Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Updating an integer type and all the usual promotion rules and numeric operators are also defined on it. 5.3 Bitwise Operators The following bitwise operators are supported on all primitive integer types: Here complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 1692 页 | 6.34 MB | 3 月前3Julia 1.10.9
26 5.2 Boolean Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Bitwise Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Updating an integer type and all the usual promotion rules and numeric operators are also defined on it. 5.3 Bitwise Operators The following bitwise operators are supported on all primitive integer types: Here complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 1692 页 | 6.34 MB | 3 月前3Julia 1.11.4
5.2 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Arbitrary Precision Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Numeric Floating-Point". Of particular interest may be An Interview with the Old Man of Floating-Point. 5.3 Arbitrary Precision Arithmetic To allow computations with arbitrary-precision integers and floating complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 2007 页 | 6.73 MB | 3 月前3Julia 1.11.5 Documentation
5.2 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Arbitrary Precision Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Numeric Floating-Point". Of particular interest may be An Interview with the Old Man of Floating-Point. 5.3 Arbitrary Precision Arithmetic To allow computations with arbitrary-precision integers and floating complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 2007 页 | 6.73 MB | 3 月前3Julia 1.11.6 Release Notes
5.2 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Arbitrary Precision Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Numeric Floating-Point". Of particular interest may be An Interview with the Old Man of Floating-Point. 5.3 Arbitrary Precision Arithmetic To allow computations with arbitrary-precision integers and floating complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 2007 页 | 6.73 MB | 3 月前3julia 1.13.0 DEV
5.2 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Arbitrary Precision Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Numeric Floating-Point". Of particular interest may be An Interview with the Old Man of Floating-Point. 5.3 Arbitrary Precision Arithmetic To allow computations with arbitrary-precision integers and floating complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 2058 页 | 7.45 MB | 3 月前3Julia 1.12.0 RC1
5.2 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Arbitrary Precision Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Numeric Floating-Point". Of particular interest may be An Interview with the Old Man of Floating-Point. 5.3 Arbitrary Precision Arithmetic To allow computations with arbitrary-precision integers and floating complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 2057 页 | 7.44 MB | 3 月前3Julia 1.12.0 Beta4
5.2 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Arbitrary Precision Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Numeric Floating-Point". Of particular interest may be An Interview with the Old Man of Floating-Point. 5.3 Arbitrary Precision Arithmetic To allow computations with arbitrary-precision integers and floating complex number: 3.0 * exp(4.0im) julia> [Polar(3, 4.0), Polar(4.0,5.3)] 2-element Vector{Polar{Float64}}: 3.0 * exp(4.0im) 4.0 * exp(5.3im) where the single-line show(io, z) form is still used for an0 码力 | 2057 页 | 7.44 MB | 3 月前3
共 30 条
- 1
- 2
- 3