Comprehensive Rust(繁体中文)
and how to include third-party crates in Chromium. • Bare-metal:這是半天的課程,會說明如何使用 Rust 在 bare-metal (嵌入式系統) 上台開發。課程 內容包含微控制器和處理器。 • 並行:這個全天課程著重於 Rust 中的並行問題。我們將探討傳統並行 (使用執行緒和互斥鎖進行先 占式排程) 以及 async/await 並行 focus is in the text box. 大部分程式碼範例都可供編輯,如上所示。有些程式碼範例無法編輯,原因如下: • 嵌入式遊樂場無法執行單元測試。請複製貼上程式碼,然後在實際的 Playground 中開啟,即可示 範單元測試。 • 當您一離開頁面,嵌入式遊樂場就會失去目前狀態!因此,學生應使用本機 Rust 安裝項目或透過 Playground 來做習題。 18 2.3 使用 Cargo allocator or even the presence of an operating system. • alloc 包括需要全域堆積配置器的型別,例如 Vec、Box 和 Arc。 • 嵌入式 Rust 應用程式通常只使用 core,偶爾會使用 alloc。 16.2 說明文件測試 Rust 說明文件的主題涵蓋甚廣,包括: • All of the details about loops0 码力 | 358 页 | 1.41 MB | 10 月前3這些年,我們一起追的Hadoop
In-Memory Process 來處理 Compliant with ANSI-92 SQL Standard,所以透過 Cloudera ODBC Driver for Impala,就可以跟既有的 BI/DW 工具整合 52 / 74 Presto Facebook 主導,2012 年秋天開始發展,2013 年春天開始推 廣,作為 Facebook Data Warehouse 的 Query 切入:使用介面無障礙 從 Hive 切入:SQL 跟 HiveQL 很接近 從 Impala 切入:Hive 的競爭對手,大家都支援 ANSI-SQL 從 Sqoop 切入:善用 JDBC 的經驗,整合 RDBMS/BI/DW 從 HBase 切入:學習 NoSQL ... 63 / 74 MySQL Hadoop Applier 直接讀取 MySQL 的 Binary Log Event,透過 libhdfs0 码力 | 74 页 | 45.76 MB | 1 年前3Julia 1.11.4
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference0 码力 | 2007 页 | 6.73 MB | 3 月前3Julia 1.11.5 Documentation
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference0 码力 | 2007 页 | 6.73 MB | 3 月前3Julia 1.11.6 Release Notes
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference0 码力 | 2007 页 | 6.73 MB | 3 月前3julia 1.13.0 DEV
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2058 页 | 7.45 MB | 3 月前3Julia 1.12.0 RC1
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2057 页 | 7.44 MB | 3 月前3Julia 1.12.0 Beta4
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2057 页 | 7.44 MB | 3 月前3Julia 1.12.0 Beta3
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well0 码力 | 2057 页 | 7.44 MB | 3 月前3julia 1.12.0 beta1
pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 173 # this is wrong, since depending on the return value # of type-inference0 码力 | 2047 页 | 7.41 MB | 3 月前3
共 22 条
- 1
- 2
- 3