积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(11)综合其他(10)Julia(10)Blender(10)云计算&大数据(1)Hadoop(1)Rust(1)

语言

全部中文(繁体)(22)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.427 秒,为您找到相关结果约 22 个.
  • 全部
  • 后端开发
  • 综合其他
  • Julia
  • Blender
  • 云计算&大数据
  • Hadoop
  • Rust
  • 全部
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Comprehensive Rust(繁体中文)

    and how to include third-party crates in Chromium. • Bare-metal:這是半天的課程,會說明如何使用 Rust 在 bare-metal (嵌入式系統) 上台開發。課程 內容包含微控制器和處理器。 • 並行:這個全天課程著重於 Rust 中的並行問題。我們將探討傳統並行 (使用執行緒和互斥鎖進行先 占式排程) 以及 async/await 並行 focus is in the text box. 大部分程式碼範例都可供編輯,如上所示。有些程式碼範例無法編輯,原因如下: • 嵌入式遊樂場無法執行單元測試。請複製貼上程式碼,然後在實際的 Playground 中開啟,即可示 範單元測試。 • 當您一離開頁面,嵌入式遊樂場就會失去目前狀態!因此,學生應使用本機 Rust 安裝項目或透過 Playground 來做習題。 18 2.3 使用 Cargo allocator or even the presence of an operating system. • alloc 包括需要全域堆積配置器的型別,例如 Vec、Box 和 Arc。 • 嵌入式 Rust 應用程式通常只使用 core,偶爾會使用 alloc。 16.2 說明文件測試 Rust 說明文件的主題涵蓋甚廣,包括: • All of the details about loops
    0 码力 | 358 页 | 1.41 MB | 10 月前
    3
  • pdf文档 這些年,我們一起追的Hadoop

    In-Memory Process 來處理 Compliant with ANSI-92 SQL Standard,所以透過 Cloudera ODBC Driver for Impala,就可以跟既有的 BI/DW 工具整合 52 / 74 Presto Facebook 主導,2012 年秋天開始發展,2013 年春天開始推 廣,作為 Facebook Data Warehouse 的 Query 切入:使用介面無障礙 從 Hive 切入:SQL 跟 HiveQL 很接近 從 Impala 切入:Hive 的競爭對手,大家都支援 ANSI-SQL 從 Sqoop 切入:善用 JDBC 的經驗,整合 RDBMS/BI/DW 從 HBase 切入:學習 NoSQL ... 63 / 74 MySQL Hadoop Applier 直接讀取 MySQL 的 Binary Log Event,透過 libhdfs
    0 码力 | 74 页 | 45.76 MB | 1 年前
    3
  • pdf文档 Julia 1.11.4

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as well
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 julia 1.12.0 beta1

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = t calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 173 # this is wrong, since depending on the return value # of type-inference
    0 码力 | 2047 页 | 7.41 MB | 3 月前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
ComprehensiveRust繁体中文繁体中文這些我們一起HadoopJulia1.11DocumentationReleaseNotesjulia1.13DEV1.12RC1Beta4Beta3beta1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩