Hello 算法 1.2.0 繁体中文 C# 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 -1; } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 379 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Dart 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 -1; } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 378 页 | 18.77 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Go 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 return -1 } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 385 页 | 18.80 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Kotlin 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 return -1 } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 382 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Java 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 -1; } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 379 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 JavaScript 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 -1; } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 379 页 | 18.78 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 TypeScript 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 -1; } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 384 页 | 18.80 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Swift 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 return -1 } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 379 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Ruby 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 第 2 章 複雜度分析 www.hello‑algo.com 27 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 -1 end 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 372 页 | 18.75 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Python 版所示,迭代和遞迴在實現、效能和適用性上有所不同。 表 2‑1 迭代與遞迴特點對比 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 return -1 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 隨機輸入資料 下的執行效率,用 Θ 記號來表示。 對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打 亂的,因此元素 1 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 ?/2 ,平均時間複雜度為 Θ(?/2) = Θ(?) 。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期0 码力 | 364 页 | 18.74 MB | 10 月前3
共 16 条
- 1
- 2













