DeepSeek图解10页PDF. . . . . . . . . . . . . . . . 7 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 . . . . . . . 8 3.1.2 核心创新 2:通用强化学习 . . . . . . . . . . . . . . . 8 3.2 含 R1-Zero 的中间推理模型训练过程 . . . . . . . . . . . . . . 9 3.3 通用强化学习训练过程 7: R1 完整训练过程 训练起点。DeepSeek-R1 的训练起点是 DeepSeek-v3-Base,作为基础模型 进行训练,为后续的推理优化奠定基础。 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 如图7所示,推理导向的强化学习(Reasoning-Oriented Reinforcement Learn- ing)得到中间推理模型(Iterim reasoning model) 型推理能力,开源纯强化学习推理模型 DeepSeek-R1-Zero R1-Zero 能生成高质量的推理数据,包括大量长链式思维(Chain-of-Thought, CoT)示例,用于支持后续的 SFT 阶段,如图7所示。更加详细介绍参考3.2节。 3.1.2 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回0 码力 | 11 页 | 2.64 MB | 8 月前3
共 1 条
- 1













