积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)系统运维(1)存储(1)

语言

全部zh(7)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.008 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 系统运维
  • 存储
  • 全部
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Curve for CNCF Main

    framework • Use bthread (M bthread map N pthread) for scalability and performance on Multi-thread CPU • Lock free queue design • Memory zero copy design • Cloud native supportCloud native for CurveBS CURVE CHUNK SERVER BLUESTORE META Precreate Chunk File Pool on ext4 RocksDB META OVERHEAD without ext4 meta overhead increase read/write magnification PERFORMANCE High Need to optimize rocksdbCurveFS
    0 码力 | 21 页 | 4.56 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    function CPU strategy func GPU strategy func OpStrategy OpStrategy OpStrategy Default implement Specialized implement 1 Specialized implement 2 (e.g., winograd) kernel_size <= 3 b < 8 “cpu” “gpu”© Affiliates. All rights reserved. How to register a strategy? @conv2d_strategy.register("cpu") def conv2d_strategy_cpu(attrs, inputs, out_type, target): strategy = OpStrategy() layout = attrs.data_layout Services, Inc. or its Affiliates. All rights reserved. Why do we need graph dispatcher 1. Minimal overhead: only one dispatching operation is required for each inference. 2. Fit for operator such as conv2d_NCHWc
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead makes interpreter infeasible - Reduce FLOPs with block-sparsified weight matrices - not a new (~10 lines of Relay IR) - A few days of work - TVM sampling model running in 30us on single server CPU core - Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40%
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    on warp level schedule Motivation 全各 “The overhead of writing warp-level schedule for TensorCore 。Work at the scheduling level: the less the better
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    ○ ONNX RuntimeArm platform support in TVM upstream IPs Target Hardware/Model Options Codegen CPU arm_cpu pixel2 (snapdragon 835), mate10/mate10pro (kirin 970), p20/p20pro (kirin 970) -target=arm64-linux-android working together with the members closely in an organized way ○ Arm - Cortex-A/Cortex-M/Neoverse CPU, Mali GPU, Ethos NPU ○ Qualcomm - Hexagon DSP, Adreno GPU ○ Hisilicon, Xilinx, NXP, TI, ST, Fujitsu
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 亿联TVM部署

    good performance gain by autotuning 3. TVM can support many kinds of hardware platform: Intel/arm CPU, Nividia/arm GPU, VTA…5 �������������� 1. Get a .log file from the autotvm on Ubuntu 2. Use the
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    Runtime JIT compile accelerator micro code • Support heterogenous devices, 10x better than CPU on the same board. • Move hardware complexity to software HW-SW Blueprint for Flexible Deep Learning
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
CurveforCNCFMainDynamicModelinTVMFacebookAWSMeetupTalkPAIShanghai20191116Nov16thLinaro亿联部署WhereAreWeGoing
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩