The Idris Tutorial Version 0.11be manipulated like any other value. The standard example is the type of lists of a given length 1, Vect n a, where a is the element type and n is the length of the list and can be an arbitrary term. When therefore give the following type to the app function, which concatenates vectors: app : Vect n a -> Vect m a -> Vect (n + m) a This tutorial introduces Idris, a general purpose functional programming language the Idris library, by importing Data.Vect, or we can declare them as follows: data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Note that we have used the same0 码力 | 71 页 | 314.20 KB | 1 年前3
The Idris Tutorial Version 0.9.20.1be manipulated like any other value. The standard example is the type of lists of a given length 1, Vect n a, where a is the element type and n is the length of the list and can be an arbitrary term. When therefore give the following type to the app function, which concatenates vectors: app : Vect n a -> Vect m a -> Vect (n + m) a This tutorial introduces Idris, a general purpose functional programming language the Idris library, by importing Data.Vect, or we can declare them as follows: data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Note that we have used the same0 码力 | 71 页 | 316.18 KB | 1 年前3
The Idris Tutorial Version 0.9.18be manipulated like any other value. The standard example is the type of lists of a given length 1, Vect n a, where a is the element type and n is the length of the list and can be an arbitrary term. When therefore give the following type to the app function, which concatenates vectors: app : Vect n a -> Vect m a -> Vect (n + m) a This tutorial introduces Idris, a general purpose functional programming language the Idris library, by importing Data.Vect, or we can declare them as follows: data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Note that we have used the same0 码力 | 69 页 | 316.20 KB | 1 年前3
The Idris Tutorial
Version 1.3.3u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 66 页 | 627.66 KB | 1 年前3
The Idris Tutorial Version 1.3.4u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 66 页 | 627.66 KB | 1 年前3
The Idris Tutorial Version 0.99u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 182 页 | 1.04 MB | 1 年前3
The Idris Tutorial Version 1.0.1u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 1.1.0u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 1.1.1u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 1.3.1u e . T h e s t an d ar d e x am p l e i s t h e t y p e of l i s t s of a gi v e n l e n gt h 1 , Vect n a, w h e r e a i s t h e e l e m e n t t y p e an d n i s t h e l e n gt h of t h e l i s t an d e t o t h e app f u n c t i on , w h i c h c on c at e n at e s v e c t or s : app : Vect n a -> Vect m a -> Vect (n + m) a T h i s t u t or i al i n t r od u c e s I d r i s , a ge n e r al p u r p y , b y i m p or t i n g Data.Vect, or w e c an d e c l ar e t h e m as f ol l ow s : data Vect : Nat -> Type -> Type where Nil : Vect Z a (::) : a -> Vect k a -> Vect (S k) a Not e t h at w e h av0 码力 | 230 页 | 1.24 MB | 1 年前3
共 94 条
- 1
- 2
- 3
- 4
- 5
- 6
- 10













