积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(24)C++(19)Rust(4)系统运维(2)DevOps(2)数据库(1)Go(1)MySQL(1)

语言

全部中文(简体)(26)中文(简体)(1)

格式

全部PPT文档 PPT(27)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 27 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • Go
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:汇编语言 x64 架构下的寄存器模型 通用寄存器: 32 位时代 • 32 位 x86 架构中的通用寄存器有: • eax, ecx, edx, ebx, esi, edi, esp, ebp • 其中 esp 是堆栈指针寄存器,和函数的调用与返回相关。 个 float 打包到一个 xmm 寄存器里同时运算,很像数学中矢量的逐元 素加法。因此 SIMD 又被称为矢量,而原始的一次只能处理 1 个 float 的方式,则称为 标量。 • 在一定条件下,编译器能够把一个处理标量 float 的代码,转换成一个利用 SIMD 指令的 ,处理矢量 float 的代码,从而增强你程序的吞吐能力! • 通常认为利用同时处理 4 个 float 的 SIMD other 给其 他文件,而且 func 也已经内联了 other , 所以编译器干脆不定义 other 了。 inline 关键字?不需要! 编译的结果完全一致? 结论:在现代编译器的高强度优化下,加不加 inline 无所谓 编译器不是傻子,只要他看得见 other 的函数体定义,就会自动内联 内联与否和 inline 没关系,内联与否只取决于是否在同文件,且函数体够小 要性能的,定义在头文件声明为
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    维护负担 支撑云原生构建 / 运行环境,多云异构支持及企业 级登录权限支持 传统运维管理类平台 蓝鲸 Rainbond KubeSphere KubeVela 面向资源管理的运维工具集 面向开发者,需结合 CI/CD 工具额外搭建 全流程能力 专门面向开发者的生产力平台,涵盖全流程需求到 开发,测试,运维的云原生一体化技术底座支撑 云厂商 DevOps 平台 华为云 DevCloud 用 自 动 化 的 方 式 让 大 家 测 得 更 全 面 , 把 事 情 做 的 质 量 提 高 , 提 升 了 测 试 的 覆 盖 度 。 可 以 说 , 没 有 Z a d i g , 集 成 测 试 完 全 没 法 做 ” 更多 Zadig 应用场景 Zadig 应用场景 加速云原生转型 / 容器化 / 多云迁移 微服务大规模的容器化转型,优 化 & 增强 DevOps ,精准检测资源设 备是否在线。 • 服务可以查看到关联的主机资源,支持登录主机,方便开发登录资 源设备诊断问题 • 完备的权限控制,极大降低了管理成本,实现安全风险可控。 IoT 端云混合场景:异构环境下,为开发者提供更好体验 Helm 场景接入服务 • 环境随时取用 :在 Zadig 上一键创建 dev 和 staging 环境,在不 同的集群上随时几分钟复制环境,随时满足自测需求
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    如果索引由多个字段组成将最用来查询过滤的字段放在前面 可能会有更好的性能。 可能会有更好的性能。 应用优化 应用优化 编写高效的 编写高效的 SQL SQL (一) (一)  能够快速缩小结果集的 能够快速缩小结果集的 WHERE WHERE 条件写在前面,如果有恒量条件, 条件写在前面,如果有恒量条件, 也尽量放在前面 也尽量放在前面  尽量避免使用 尽量避免使用 GROUP 尽量不用触发器,特别是在大数据表上 尽量不用触发器,特别是在大数据表上 应用优化 应用优化 编写高效的 编写高效的 SQL SQL (三) (三)  更新触发器如果不是所有情况下都需要触发,应根据业务需要加 更新触发器如果不是所有情况下都需要触发,应根据业务需要加 上必要判断条件 上必要判断条件  使用 使用 union all union all
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 Zadig 产品使用手册

    多服务并行部署发布,云原生构建环境和运行 环境,基础设施对接及企业级 SSO/ 权限管理 等 运维管理类平台 蓝鲸 Rainbond KubeSphere KubeVela 面向资源管理的运维工具集 面向开发者,需结合 CI/CD 工具额外 搭建全流程能力 专门面向开发者的生产力平台,涵盖需求到开 发,测试,运维的云原生一体化技术底座支撑 云厂商 DevOps 平台 华为云 DevCloud 持续部署 (CD) -> 持续运营 (CO) 质量右移 质量左移 软件研发核心工程实践:基于质量工程的持续交付体系( CI/CD 、 CO 、 CT 、 CS ) 工 程 实 践 : • 持 续 集 成 ( C I 针 对 代 码 ) • 持 续 交 付 ( C D 针 对 需 求 ) • 持 续 部 署 ( C D 针 对 服 务 ) • 持 续 测 试 ( C T 针 对 全 流 测试验证 变更发布 需求开发 提交代码及 CI 过程 1. 本地编写代码推送到远端分支 1. 本地基于 develop 分支新建分支,在新建的分支上,编写代码 2. 推送代码到自己账号下的代码库 3. GitLab 上创建 MR 2. 自动触发 CI 过程,包括单元 测试,代码风格 检查、代码扫描 。 Sprint 发布 测试验证 变更发布 产品规划 需求开发
    0 码力 | 52 页 | 22.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    分钟 屁股 为什么需要流水线 • 一些懒得动脑子的同学可能会脱口而出, 不就是 5 + 10 + 5 + 15 + 30 + 20 = 85 分 钟嘛!可以,不过这是在你每次只做一件 事的情况下,例如你烧开水时就站在旁边 干瞪眼,什么也不做,其实完全可以在烧 开水的同时洗脸刷牙呀!原始的 CPU 也 是这样, ALU 在运算的时候指令解码单元 就在旁边干瞪眼,要等 ALU 跑完写回寄 的所有指令和数据删了 (浪费了 50% 的算力)。这就是说 CPU 第一次遇见一个分支时,两个分支都会被预执行 。 • 同一段程序被多次执行后,如果每次都是分支 A ,下一次 CPU 就会总结经验,预判到下 一次应该也是分支 A ,并且把 90% 的流水线用于预先执行分支 A 的剧本, 10% 的流水 线用于预先执行分支 B 。如果预判成功,的确走了分支 A ,那么只会浪费 10% 的算力; 如果预判失败,最后走了分支 这就是,无分支优化。 • setle 指令是单独一条指令,不需要跳转。 比起需要跳转的 jle 指令,他避免了 CPU 预测分支和预测失败带来的额外开销。 条件跳转指令 vs 无分支指令 • x86 指令集架构中,条件跳转指令有 j 开头的一系列,无分支指令有 set 系列和 cmov 系列。 • jle .L1 上一次比较结果为小于等于时,程序跳转到 .L1 处,否则不跳转继续往下执行。 • setle
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    科技进步奖评选中的最高级别奖项,旨在嘉奖在计 算机科学、技术或工程领域具有重要发现、发明、原始创新,在相关领域有一 定国际影响的优秀成果, AtlasGraph 的获奖证明了其技术领先性、创新性、 重要性,在自主可控浪潮下,实现了对国外产品的有效替代,防止高新技术领 域“卡脖子”现象的发生。 海致科技集团、海致星图联合清华大学研发的“ AtlasGraph 大规模图数据分析平 台”荣获中国计算机学会( CCF : 图数据建模 • 图计算引擎 • 图数据集成 • 可视化分析 • 知识图谱解决方案 • 图查询语言 • 欺诈检测 • 网络安全分析 • 社交网络分析 • BI 工具 • 图分析工具集 • 图咨询服务 Source : Graph Aware 图数据库发展趋势 AtlasGraph 研发背景 • 业务对大图分析的诉求(千亿点、万亿边) • 实时风控对图库的性能挑战( OLTP 要想让内存缓存发挥最大的作用,就要能在有限的内存中存下尽量多的图数据 • 例如,对于属性的存储,可以通过自行序列化 / 反序列化大幅节省内存 • 而自定义存储格式往往需要内存的精细操作,由于 Rust 允许在 unsafe 下访问裸指针, 可以实现零开销读取 • 将 Unsafe 包裹,对外提供足够的接口 i32 i64 u32 u32 string string 定长 变长 高可用技术方案 基于 Chain Replication
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    char 在 x86 架构是有符号的 (char = signed char) ,而在 arm 架构上则认为是无符号的 (char = unsigned char) ,因为他 认为“ arm 的指令集处理无符号 8 位整数更高效”,所以擅自把 char 魔改成无 符号的…… • 顺便一提, C++ 标准保证 char , signed char , unsigned char 是三个完全 不同的类型, 了。而 rust 这种预先规定好一些后缀,就只能是他们标准库的那 个 int32 ,不能自己定义了。 • 所以 cpp 之父曾经说,他设计 cpp11 的时候,是考虑“如何在对语言本身改动最小的情况下 ,尽量只在标准库里做手脚,尽可能只利用现有的语言特性,实现 cpp 的现代化。” • 例如 shared_ptr 可以通过利用语言本身的“拷贝构造函数”实现引用计数,没必要在编译器里 开洞。但“移动语义”这个概念在旧 的十进制)。 • 注意: stoi 默认是十进制的,如果写 stoi(“7cfe”) 会得到 7 ,因为他只认识 ‘ 7’ 是数字,把 “ cfe” 看做额外字符忽略掉了(因为 c 不是十进制意义下的 数字)。 • 十六进制的字母无视大小写,例如 stoi(“7CFE”, nullptr, 16) 的也会得到 31198 。 stoi 的第三参数: base stoi 的 base 参数实战案例
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 Go读书会第二期

    践行哲学,遵循惯例,认清本质,理解原理 • Init 函数 • 成为“一等公民” • defer 的惯用法与坑 • 变长参数函数妙用 • 方法的本质、 receiver 参数类型选择、方法集 合 Go 程序逻辑的基本承载单元 Part5 – 语法核心:接口 践行哲学,遵循惯例,认清本质,理解原理 • 接口的内部表示 • 接口设计 • 接口与组合 接口:一切皆组合 Part6
    0 码力 | 26 页 | 4.55 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    配置 • 子项目的 CMakeLists.txt 就干净许多,只是创建了 biology 这个静态库对象,并通过 GLOB_RECRUSE 为他批量添加 了所有位于 src 和 include 下源码和头文件。 • 根项目的 CMakeLists.txt 负责处理全局有效的设定。而子 项目的 CMakeLists.txt 则仅考虑该子项目自身的设定,比 如他的头文件目录,要链接的库等等。 biology 的 pybmain 也能够共享 根 /biology/include 这个头文件搜 索路径。 五、子项目的源文件 • 这里我们给 biology 批量添加了 src/*.cpp 下的全部源码文 件。 • 明明只有 *.cpp 需要编译,为什么还添加了 include/*.h ? 为了头文件也能被纳入 VS 的项目资源浏览器,方便编辑。 • 因为子项目的 CMakeLists 中的所有路径下查找 XXX.cmake 这个文件。 • 这样你可以在 XXX.cmake 里写一些你常用的函数,宏,变量等。 十三、你知道吗? CMake 也有 include 功能 • 和 C/C++ 的 #include 一样, CMake 也有一个 include 命令。 • 你写 include(XXX) ,则他会在 CMAKE_MODULE_PATH 这个列表 中的所有路径下查找 XXX
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    * 数量 2667*16*2=42672 MB/s • 那么,频率相同的情况下,可以考虑插两块 8GB 的内存, 比插一块 16GB 的内存更快,不过价格可能还是翻倍的。 • 系统会自动在两者之间均匀分配内存,保证读写均匀分配 到两个内存上,实现内存的并行读写,这和磁盘 RAID 有 一定相似之处。 验证一下刚刚的 parallel_add 是不是用足了全部带宽 • 刚刚 a 数组的大小是 理论带宽极限 42672 MB/s ! • 而数据量足够大时, 才回落到正常的带宽 。 • 这是为什么? CPU 内部的高速缓存 • 原来 CPU 的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 AOSOA :注意,内部 SOA 的尺寸不宜太小 如果内部 SOA 太小,内部循环只有 16 次连续的读 取, 16 次结束后就会跳跃一段,然后继续连续的 读取。这会导致 CPU 预取机制失效,无法预测下 一次要读哪里,等发现跳跃时已经来不及了,从而 计算的延迟无法隐藏。 如果每个属性都要访问到,那还是 AOS 比较好( AOSOA 也不赖哦) 这是因为使用 SOA 会让 CPU 不得不同时维护很多条预取赛道(
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
共 27 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件04Zadig面向开发开发者原生DevOps平台MySQL产品使用手册使用手册游人RustCCAtlasGraph15gogolang1607
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩