积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(21)C++(18)系统运维(2)DevOps(2)Rust(2)数据库(1)Go(1)MySQL(1)

语言

全部中文(简体)(23)中文(简体)(1)

格式

全部PPT文档 PPT(24)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 24 个.
  • 全部
  • 后端开发
  • C++
  • 系统运维
  • DevOps
  • Rust
  • 数据库
  • Go
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    倍(物理核心数量)才算理想加速比。 加速曲线 • funcA 用了 2 核就饱和。 • funcB 用了 4 核才饱和。 • funcC 用了 6 核才饱和。 • 结论:要想利用全部 CPU 核心,避免 mem-bound ,需要 func 里有足够的计算 量。 • 当核心数量越多, CPU 计算能力越强,相 对之下来不及从内存读写数据,从而越容 易 mem-bound 。 1 2 4 • 因此,数据小到装的进二级缓存,则最大带 宽就取决于二级缓存的带宽。稍微大一点则 只能装到三级缓存,就取决于三级缓存的带 宽。三级缓存也装不下,那就取决于主内存 的带宽了。 • 结论:要避免 mem-bound ,数据量尽量足 够小,如果能装的进缓存就高效了。 L2: 256 KB L3: 12 MB 缓存的工作机制:读 • 缓存中存储的数据结构: • struct CacheEntry 64 字节都被读取到缓存了,但实际只用到了其中 4 字节,之 后又没用到剩下的 60 字节,导致浪费了 94% 的带宽。 • 虽说连续、顺序访问是最理想的,然而在使用哈希表等数据结构中,不 可避免的会通过哈希函数得到随机的地址来访问,且 Value 类型可能小 于 64 字节,浪费部分带宽。怎么办? 解决:按 64 字节分块地随机访问 • 解决方法就是,把数据按 64 字节大小分块。随
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    find/replace/substr…… • string 可以通过 s.c_str() 重新转换回古板的 const char * 。 • string 在离开作用域时自动释放内存 (RAII) ,不用手动 free 。 C++ 字符串和 C 字符串的不同 • C 语言字符串是单独一个 char *ptr ,自动以 ‘ \0’ 结尾。 • C++ 字符串是 string 类,其成员有两个: char • 而且即使搞错了也能正常编译通过(一些高级的编译器会 给出警告),但是运行结果不对,或者还有可能崩溃。 泛型的 iostream 应运而生 • 得益于 C++ 的重载技术, cout 不用你手动指定类型,他 会自动识别参数的类型,帮你调用相应的格式化函数。 c_str 和 data 的区别 • s.c_str() 保证返回的是以 0 结尾的字符串首地址指针,总长度为 s.size() std::string 定义很多个不同的 + 重载,每个针对不同的数字类 型( int 、 float 、 double )排列组合,但是这样没有可扩展性,而且影响编 译速度。 • 所以 cpp 说,你必须手动把 42 先转换为字符串,然后再和已有的字符串相 加: • “you have ” + std::to_string(42) + “ yuan” std::to_string 数字转字符串 •
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    自助验证更高效:自动化工作流 + 云上环境,高效验证调试 安全发布有信心: 一个平台完成日常 90% 工作,开发自助发布 需求研发总耗时降低 30% 需求迭代周期缩短 1-5 倍 解放开发,专注编码 更多的架构和技术提升 测试 效率和质量难以平衡: • 自动化测试难以开展 • 环境不稳定并行验证效率低 • 测试多苦劳,价值难以体现 测试效果提升:独立稳定环境用于测试验收、自动化建设 验证有效性提升 100% 解放测试,全面自动化 提升效率,建设质量体系 安全 安全建设被动: • 安全建设缺乏时机和抓手 • 出现问题,影响业务进度 前置安全服务:全流程嵌入安全检测,避免流入业务环节。 全流程安全门禁:关键环节设置安全门禁,快速反馈研发改进 故障拦截率提升 1-3 倍 业务响应效率提升 3-5 倍 全流程安全建设 更多价值体现 组织 靠流程和个人,效率越来越低 Rancher 上手动替换版本 3. 不透明的测试环境导致大量问题 4. 为每一次部署维护一个 Chart 版本 现状 效能提升场景: 2K+ 微服务、多语言、 Helm 、 K8s 多集群 1. 开发流程 提交代码到 Feature 分支 -> GitLab-CI 自动构建打包 Chart (写一堆复杂 的脚本 ) -> -> Rancher 上手动替换 Helm
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    图分析技术分类 图查询 • 使用图数据库的查询语言进行点边搜索 图算法 • 中心性算法 • 社区算法 • 路径算法 • … 图深度学习 • 图嵌入 • 图卷积 • 图注意力网络 • 图自编码器 图查询及其应用场景 图查询 • 使用图数据库的查询语言进行点边的关联查询,可以快速完成传统数据库难以完成的 多度点边关 联 当前图的典型应用场景 路径识别 群体挖掘 节点识别 相似节点 灵活易用的开发平台 • AtlasML Python Library • 集成 Jupyter Notebook 超参数自动优化 • 支持超参数自动调优,解放算 法科学家生产力,避免繁杂的 手动调参 海致图神经网络平台特点 Rust 语言特性助力构建高性能图数据库 01 利用 Rust Stream 进行数据流式 处理 02 03 协程和严格的内存安全性,编译 时捕获数据竞争和并发问题
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    令解码和指令缓存的压力等原因,出现加速超过 4 倍的情况。 第 1 章:化简 编译器优化:代数化简 编译器优化:常量折叠 编译器优化:举个例子 编译器优化:我毕竟不是万能的 结论:尽量避免代码复杂化,避免使用会造 成 new/delete 的容器。 简单的代码,比什么优化手段都强。 造成 new/delete 的容器:我是说,内存分配在堆上的容器 • 存储在堆上(妨碍优化): • vector 的函数体定义,就会自动内联 内联与否和 inline 没关系,内联与否只取决于是否在同文件,且函数体够小 要性能的,定义在头文件声明为 static 即可,没必要加 inline 的 static 纯粹是为了避免多个 .cpp 引用同一个头文件造成冲突,并不是必须 static 才内 联 如果你不确定某修改是否能提升性能,那你最好实际测一下,不要脑内模拟 inline 在现代 C++ 中有其他含义,但和内联没有关系,他是一个迷惑性的名字 持的指令。老师的电脑支持 AVX 指令集,所 以他用了。不过注意这样编译出的程序,可能 放到别人不支持 AVX 的电脑上没法运行。 数组清零:自动调用标准库的 memset memcpy 同理,不必为了高效,手动改 写成对 memcpy/memset 的调用,影响 可读性。编译器会自动分析你是在做拷贝 或是清零,并优化成对标准库这俩的调用 。 从 0 到 1024 填充: SIMD 加速 paddd :四个
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    C++ 有哪些面向对象思想? C++ 思想:封装 比如要表达一个数组,需要:起始地址指针 v ,数组大小 nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 封装:不变性 比如当我要设置数组大小为 4 时,不能只 nv = 4 还要重新分配数组内存,从而修改数组起始地址 v 常遇到:当需要修改一个成员时,其他也成员需要被修改,否则出错 还包括了用于销毁的解构函数( destructor ) 离开 {} 作用域自动释放 手动释放 RAII :避免犯错误 与 Java , Python 等垃圾回收语言不同, C++ 的 解构函数是显式的,离开作用域自动销毁,毫不含 糊(有好处也有坏处,对高性能计算而言利大于 弊) 如果没有解构函数,则每个带有返回的分 支都要手动释放所有之前的资源 : RAII :异常安全( exception-safe 自定义构造函数:无参数(使用初始化表达式) 为什么需要初始化表达式? 1. 假如类成员为 const 和引用 2. 假如类成员没有无参构造函数 3. 避免重复初始化,更高效 自定义构造函数:多个参数 自定义构造函数:单个参数 自定义构造函数:单个参数(陷阱) 自定义构造函数:单个参数(避免陷阱) 避免陷阱体现在哪里? • 加了 explicit 表示必须用 () 强制转换。 • 否则 show(80) 也能编译通过!
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    cmake/ 常见误区:小彭老师,我手动添加 -std=c++17 行不行? • 请勿直接修改 CMAKE_CXX_FLAGS 来添加 -std=c++17 (你在百度 CSDN 学到的用 法)。 • 请使用 CMake 帮你封装好的 CMAKE_CXX_STANDARD (从业人员告诉你的正确用 法)。 • 为什么百度不对:你 GCC 用户手动指定了 -std=c++17 ,让 MSVC 在自己的项目中,我推荐全部用对象库 (OBJECT) 替代静态库 (STATIC) 避免跨平台的麻烦 。 对象库仅仅作为组织代码的方式,而实际生成的可执行文件只有一个,减轻了部署的困难。 静态库的麻烦: GCC 编译器自作聪明,会自动剔除没有引用符号的那些对 象 对象库可以绕开编译器的不统一:保证不会自动剔除没引用到的对象文件 虽然动态库也可以避免剔除没引用的对象文件,但引入了运行时链接的麻烦 add_library 解决 1 :把 dll 所在位置加到你的 PATH 环境变量里去,一劳永逸。 • 解决 2 :把这个 dll ,以及这个 dll 所依赖的其他 dll ,全部拷贝到和 exe 文件同一目录 下。 手动拷贝 dll 好麻烦,能不能让 CMake 把 dll 自动生成在 exe 同一 目录? • 归根到底还是因为 CMake 把定义在顶层模块里的 main 放在 build/main.exe 。
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针

    位系统上就 32 位, 64 位系统上就 64 位。 Windows 认为 long 不论 32 位系统还是 64 位系统都一样应该为 32 位,认为这样安全。 因此我们在编写 C 语言程序时,应该避免使用 long 类型,他会导致你的程序难以跨平台。 除了 long 之外的其他类型则没有区别,可以放心使用。 无符号整数: unsigned 修饰 有符号版本 无符号版本 char unsigned int16_t; • typedef int int32_t; • typedef long long int64_t; • 这样不论操作系统对类型的定义如何混乱,这些标准化的类型都是确定的大小。 • 这就避免了跨平台的麻烦,而且直接他们在类型名字中直接写明了类型的大小,更直观。 标准化的类型: stdint.h • 除了有符号的 int32_t 系列外,也提供了无符号 uint32_t 系列: • ,四级指针 int**** ,以此类推。 • C 语言有 int* 这种指针类型, C++ 中还新增了 int& 这种引用类型。引用和指针是一样 的,只是包装了一层语法糖,唯二的区别是:他不需要手动写 & 和 * 运算符;他的拷贝 是导致他指向的值拷贝,而不是对门牌号的拷贝。 • 但是 C++ 的 int&& 并不是二级指针,而是右值引用,之后的课里会讲到。 实验:你的电脑是大端还是小端?
    0 码力 | 128 页 | 2.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    对象移动到一个全局变量去, 从而延长其生命周期到 myfunc 函数体外 。 • 这样就可以等下载完再退出了。 main 函数退出后自动 join 全部线程 • 但是需要在 main 里面手动 join 全部线 程还是有点麻烦,我们可以自定义一个类 ThreadPool ,并用他创建一个全局变量, 其解构函数会在 main 退出后自动调用。 std::jthread :符合 RAII ,而不涉及到真正的多线程。可以用这个 实现惰性求值( lazy evaluation )之类。 std::async 的底层实现: std::promise • 如果不想让 std::async 帮你自动创建线程 ,想要手动创建线程,可以直接用 std::promise 。 • 然后在线程返回的时候,用 set_value() 设置返回值。在主线程里,用 get_future() 获取其 std::future 另一个线程解锁后,才再次上锁。 • 而调用 unlock() 则会进行解锁操作。 • 这样,就可以保证 mtx.lock() 和 mtx.unlock() 之间的代码段,同一时间只有一个线程在执行 ,从而避免数据竞争。 通俗的说: mutex 是个厕所, A 同学在用了, B 同学就不能进去,要等 A 同学用完了才能进 去。 std::lock_guard :符合 RAII 思想的上锁和解锁 • 根据
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    既然 if-else 分支会导致分支预测的额外开 销,那我想办法不用分支不就行了? • 这就是,无分支优化。 • setle 指令是单独一条指令,不需要跳转。 比起需要跳转的 jle 指令,他避免了 CPU 预测分支和预测失败带来的额外开销。 条件跳转指令 vs 无分支指令 • x86 指令集架构中,条件跳转指令有 j 开头的一系列,无分支指令有 set 系列和 cmov 系列。 要先用 cpuid 指令检测是否支持,如果在不支持 cmov 的 CPU 上使用会产生 SIGILL 错误。不过现在 64 位的 x86 CPU 都保证自带了 cmov 和 sse 拓展,所以不需要手动 开启什么开关编译器就会自动生成利用 cmov 和 sse 指令的高效代码,这也是 x86-64 的优点之一。 https://www.felixcloutier.com/x86/cmovcc 小于(无符号) below a 大于(无符号) above e 等于 equal ne 不等于 not equal http://unixwiz.net/techtips/x86-jumps.html 手动进行无分支优化的方法 无分支优化:从汇编角度分析 • 发生了什么?让我们把源码和汇编逐个对应。 • x 是第一个参数(通过 edi 传入,被存入 rbp 指向的堆 栈) • 比较 x 和 0
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件0715Zadig面向开发开发者原生DevOps平台游人RustCCAtlasGraph0402111205
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩