积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(21)C++(15)Rust(6)系统运维(2)DevOps(2)

语言

全部中文(简体)(23)

格式

全部PPT文档 PPT(23)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 23 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    实施负担较重难以推广 面向多云厂商友好,实施迁移成本极低,可扩展性 强,全球多地跨云跨域安全可靠自动化部署 企业基于 CI/CD 工具自建 DevOps 流程平台 围绕 Jenkins 、 Tekton 、 Argo 等 搭建流程串接胶水平台 建设成本高 500-2000 万之间 使用和学习门槛高;随业务发展扩展性差 局限性大,内部推广难度极高,做完后维 护成本高价值难被证明 护成本高价值难被证明 低采购成本、低实施成本, 内置模板库和最佳实践;高扩展性、技术先进性强 ,可灵活广泛接入现有工具链和业务场景 基于代码管理的 DevOps 方 案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可灵活 安全接入多个代码仓及周边工具链 Zadig 与现存 DevOps 方案对比 来自客户的评价: 地 、 私 有 云 、 离 线 环 境 的 产 品 发 布 、 许 可 和 支 持 的 管 理 产品各版本功能差异 基础版注重工程师体验,专家版保障稳定可靠高效发布;企业版安全发布、数据运营及企业扩展定制 3 Zadig 平台工程模式及 应用场景、架构解析 开发者自服务 • 通过自服务的方式来加快发布速 度,无需与运维持续沟通 降低个人心智负担 • 通过平台工程,将底层的复杂性 抽象化,降低个人心智负担,提
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针

    断,才能支持有符号整数的加减法,因此如今的计算机都采用了一种更聪明的表示法: • 他们让 11111111 表示 -1 , 10000000 表示 -128 ,也就是大名鼎鼎的补码表示法。 • 这样做的目的是,利用加法器的“溢出”机制,例如 -1 + 2 = 1 ,在计算机看来就是: • 11111111 + 00000010 = 100000001 • 正好和普通的二进制加法一样,只需要丢弃最前面的那一位进位就可以了。 • 48 位一致(符号扩展),也就是虚拟地址空间只有 48 位。 • 而经过 MMU 映射后实际给内存的地址只有 39 位,因此如今的 x64 架构实际上只能访 问 512GB 内存,如果插了超过这个大小的内存条他也不会认出来。 • 此外, 16 位计算机实际上能通过额外的段寄存器访问到 20 位的内存地址( 1MB )。 • 32 位计算机还能通过 PAE 技术(物理地址扩展)访问到 36 位的内存地址( 实验:不同大小之间的整数互转 • C 语言可以用 (short)x 的形式来强制把任意类型的 x 转换为 short 类型。 • 如果源类型比目的类型小,那么会根据目的类型是有 符号还是无符号的,自动扩展他的符号位。 • 例如 char 类型的 -128 是 10000000 • 强制转换为 short 后是 11111111 10000000 • 可见符号位被完全填充到了 short 的前一个字节,这
    0 码力 | 128 页 | 2.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 format 支持 跑远了! • 鉴于 C++20 还没有普遍落地(例如 CMake 不支持 C++20 modules )因此我们的课程 基于 C++17 标准,有时会谈到 C++20 作为扩展阅读。 C++ 有哪些面向对象思想? C++ 思想:封装 比如要表达一个数组,需要:起始地址指针 v ,数组大小 nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 管理的对象生命周期长度,取决于他所属的唯一一个引用的寿命 。 那是不是只要 shared_ptr 就行,不用 unique_ptr 了? • 可以适当使用减轻初学者的压力,因为他的行为和 Python 等 GC 语言的引用计数机制很像。但从长远 来看是不行的,因为: 1. shared_ptr 需要维护一个 atomic 的引用计数器, 效率低,需要额外的一块管理内存,访问实际对象 需要二级指针,而且 deleter
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    另一种方式:先创建目标,稍后再添加源文件 如果有多个源文件呢? 逐个添加即可 使用变量来存储 建议把头文件也加上,这样在 VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS 选项,当添加新文件时,自动更新变量 如果源码放在子文件夹里怎么办? 必须把路径名和后缀名的排列组合全部写出来吗?感觉好麻烦 标准: CMAKE_CXX_STANDARD 变量 • CMAKE_CXX_EXTENSIONS 也是 BOOL 类型,默认为 ON 。设为 ON 表示启用 GCC 特有的一些扩展功能; OFF 则关闭 GCC 的扩展功能,只使用标准的 C++ 。 • 要兼容其他编译器(如 MSVC )的项目,都会设为 OFF 防止不小心用了 GCC 才有的 特性。 • 此外,最好是在 project 指令前设置 find_package(spdlog REQUIRED) 时却 变成预编译链接库的版本。(嗯,其实不是 PUBLIC 而是 INTERFACE ,因为伪对象没有实体) 和古代 CMake 做对比:为什么 PUBLIC 属性的传播机制如此便利 现代 CMake : 古代 CMake : 和 find_package(TBB CONFIG REQUIRED) 有什么区别? 其实更好的是通过 find_package(TBB
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 得可以获得两倍的性能。相似的 ,大多数多线程的应用不会比双核处理器的两倍快。他们应该比单核处理器运行的快,但 是性能毕竟不是线性增长。 • 为什么无法做到呢?首先,为了保证缓存一致性以及其他握手协议需要运行时间开销。在 今天,双核或者四核机器在多线程应用方面,其性能不见得的是单核机器的两倍或者四倍。 这一问题一直伴随 CPU 发展至今。 并发和并行的区别 • 运用多线程的方式和动机,一般分为两种。 :每个线程一个任务队列,做完本职工作后可以认领其他线程的任务 工作窃取法( work-stealing ) 原始的单一任务队列 解决 4 :随机分配法(通过哈希函数或线性函数) • 然而队列的实现较复杂且需要同步机制,还是有一 定的 overhead ,因此另一种神奇的解法是: • 我们仍是分配 4 个线程,但还是把图像切分为 16 份。然后规定每一份按照 xy 轴坐标位置编号,比 如 (1,3) 等。
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    std::string 其实是同等 地位的。 • 虽然也可以给 std::string 定义很多个不同的 + 重载,每个针对不同的数字类 型( int 、 float 、 double )排列组合,但是这样没有可扩展性,而且影响编 译速度。 • 所以 cpp 说,你必须手动把 42 先转换为字符串,然后再和已有的字符串相 加: • “you have ” + std::to_string(42) + “ yuan” 为什么我看官方文档上没写?标准库头文件里也没看到? • 其实是有的,只不过官方为了让 头文件不依赖于 头 文件,把他们写成了模板,并利用类似 SFINAE 的机制给模板参数类型的设 了一些限制(相当于把 string_view 定义为一个 concept ),所以虽然 中看不到 string_view 的出现,却能把 string_view 以后是否超过容量,决定是否要扩容数组。 string 的 append 实现 • 在 compare 等函数涉及到 0 结尾字符串的版本,都会调用 char_traits 中的方法,方便用户通过模板扩展(性能上或功能上) 。 • 例如: basic_string 。 char_traits 内函数的实现 Unicode 与宽字符 第 9
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺

    VARCHAR(24)) TDengine - 业务模式 开源版 企业版 云服务版 核心功能开源 • SQL 支持 • 无模式写入 • 缓存 • 流计算 • 数据订阅 • 集群、高可用 高可靠、线性扩展 + 专业技术服务 • 边云数据复制 • 跨云 / 异地数据复制 • 增量备份 • 多级存储 • 工业数据接入 全托管时序数据 管理云服务平台 • 全托管服务 • VPC 对等连接 AWS/Azure/ GCP) CONTENTS 自 我 介 绍 T D e n g i n e t a o s X R u s t 使 用 taosX - 物联网数据接入问题 • 多种不同协议数据对接,开发复杂度高 • 模块之间关联性不高但模块组成复杂,可维护性差 • 大量设备大量数据归集存储,存储压力大 • 数据总线 / 消息队列消息接入,定制化程度要求高 • 数据业务逻辑自定义需求强
    0 码力 | 29 页 | 2.26 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 *)(rdi + rsi * 4) size_t 在 64 位系统上相当于 uint64_t size_t 在 32 位系统上相当于 uint32_t 从而不需要用 movslq 从 32 位符号扩展 到 64 位,更高效。而且也能处理数组大 小超过 INT_MAX 的情况,推荐始终用 size_t 表示数组大小和索引。 浮点作为参数和返回: xmm 系列寄存器 xmm0 = xmm0 +
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    宽。三级缓存也装不下,那就取决于主内存 的带宽了。 • 结论:要避免 mem-bound ,数据量尽量足 够小,如果能装的进缓存就高效了。 L2: 256 KB L3: 12 MB 缓存的工作机制:读 • 缓存中存储的数据结构: • struct CacheEntry { • bool valid; • uint64_t address; • char data[64]; 个字节时,实际会导致 0x0040~0x0080 的 64 字节数据整个被读取到缓存中。 • 这就是为什么我们喜欢把数据结构的起始地址和大小对齐到 64 字节,为的是不要浪费缓存行的存储空间。 缓存的工作机制:写 • 缓存中存储的数据结构: • struct CacheEntry { • bool valid, dirty; • uint64_t address; • char )才能最高效,原因稍后会说明。 AOSOA :注意,内部 SOA 的尺寸不宜太小 如果内部 SOA 太小,内部循环只有 16 次连续的读 取, 16 次结束后就会跳跃一段,然后继续连续的 读取。这会导致 CPU 预取机制失效,无法预测下 一次要读哪里,等发现跳跃时已经来不及了,从而 计算的延迟无法隐藏。 如果每个属性都要访问到,那还是 AOS 比较好( AOSOA 也不赖哦) 这是因为使用 SOA 会让 CPU
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    Introduction to third party Runtime crates and their incompatibility with mobile environment Rust 异步机制 Asynchronous Rust 异步并发框架是许多大型应用、系统具备的底层能力。 区别于多线程编程模型,它带来以下优势:  任务调度颗粒度更小,充分利用线程资源  更可控的线程数 async / await  Waker asyn c Future Waker poll Syntax sugar wake await Rust 异步机制 Asynchronous Rust Rust 异步机制 Asynchronous Rust Waker Task Future task Queue wake Worker Future.poll() Reactor
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Zadig面向开发开发者原生DevOps平台C++高性性能高性能并行编程优化课件1202110615霍琳2023RustChinaConfRust0407陈明煜
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩