Agda User Manual v2.5.4.2Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like ∀, α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. Many mathematical symbols can be typed using the corresponding LaTeX [https://en.wikipedia let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 216 页 | 207.61 KB | 1 年前3
Agda User Manual v2.5.4.1Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like ∀, α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. Many mathematical symbols can be typed using the corresponding LaTeX [https://en.wikipedia let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 216 页 | 207.64 KB | 1 年前3
Agda User Manual v2.5.4Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like ∀, α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. Many mathematical symbols can be typed using the corresponding LaTeX [https://en.wikipedia let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 216 页 | 207.63 KB | 1 年前3
Agda User Manual v2.5.2Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity Abstraction Pattern matching lambda Local Definitions: let and where let-expressions where-blocks Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings in aux (pred n) where pred : Nat → Nat pred zero = zero pred (suc m) = m Lexical Structure Agda code is written in UTF-8 encoded plain text files with the extension .agda. Most unicode0 码力 | 151 页 | 152.49 KB | 1 年前3
Agda User Manual v2.6.2.2Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Lossy Unification Mixfix Operators Module System Mutual Recursion Pattern identifier (like α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. For example 3∷2∷1∷[] is a valid identifier, so we need to write 3 ∷ 2 ∷ 1 ∷ [] instead to let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 354 页 | 433.60 KB | 1 年前3
Agda User Manual v2.6.2.1Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. For example 3∷2∷1∷[] is a valid identifier, so we need to write 3 ∷ 2 ∷ 1 ∷ [] instead to let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 350 页 | 416.80 KB | 1 年前3
Agda User Manual v2.6.0.1Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like ∀, α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. Many mathematical symbols can be typed using the corresponding LaTeX [https://en.wikipedia and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 256 页 | 247.15 KB | 1 年前3
Agda User Manual v2.6.0Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like ∀, α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. Many mathematical symbols can be typed using the corresponding LaTeX [https://en.wikipedia and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 256 页 | 246.87 KB | 1 年前3
Agda User Manual v2.6.2Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Mixfix Operators Module System Mutual Recursion Pattern Synonyms Positivity identifier (like α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. For example 3∷2∷1∷[] is a valid identifier, so we need to write 3 ∷ 2 ∷ 1 ∷ [] instead to let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 348 页 | 414.11 KB | 1 年前3
Agda User Manual v2.6.3Arguments Instance Arguments Irrelevance Lambda Abstraction Local Definitions: let and where Lexical Structure Literal Overloading Lossy Unification Mixfix Operators Module System Mutual Recursion Pattern identifier (like α, ∧, or ♠, for example). It is therefore necessary to have spaces between most lexical units. For example 3∷2∷1∷[] is a valid identifier, so we need to write 3 ∷ 2 ∷ 1 ∷ [] instead to let and where let-expressions where-blocks Proving properties More Examples (for Beginners) Lexical Structure Tokens Layout Literate Agda Literal Overloading Natural numbers Negative numbers Strings0 码力 | 379 页 | 354.83 KB | 1 年前3
共 535 条
- 1
- 2
- 3
- 4
- 5
- 6
- 54













