stdx::interval, a library for intervals on totally ordered setsstdx::interval, a library for intervals on totally ordered sets Eric Hughes, Meadhbh Hamrick stdx::interval, a library for intervals on totally ordered sets Eric Hughes, Meadhbh Hamrick In brief stdx::interval stdx::interval implements the mathematical sense of an interval on a totally ordered set. The library reasons about intervals as sets, not as interval expressions. The library is header-only and targets under the MIT License. Features Predicates Membership. Determine if a point is a member of the interval as a set. Equality. Compares the intervals as sets, not as specifications. Operations Point comparison0 码力 | 1 页 | 45.14 KB | 6 月前3
Sender Patterns to Wrangle Concurrency in Embedded Devicestemplate <stdx::ct_string C, stdx::ct_string L, stdx::ct_string S, typename Ctx> bool handled{}; 1 2 3 4 5 struct debug_handler { 6 template <stdx::ct_string C, stdx::ct_string L, stdx::ct_string S template <stdx::ct_string C, stdx::ct_string L, stdx::ct_string S, typename Ctx> bool handled{}; 1 2 3 4 5 struct debug_handler { 6 template <stdx::ct_string C, stdx::ct_string L, stdx::ct_string S template <stdx::ct_string C, stdx::ct_string L, stdx::ct_string S, typename Ctx> constexpr auto signal(auto ...) -> void { handled= true; } }; } 1 2 template <stdx::ct_string C 0 码力 | 106 页 | 26.36 MB | 6 月前3
Vectorizing a CFD Code With std::simd Supplemented by Transparent Loading and Storing&val1, const T &val2) { // ... auto mask = u < thres; if (stdx::any_of(mask)) twoF = 2.0 + u * (2.0 / 3.0 + u * (0.4 + 2.0 / 7.0 * u)); if (!stdx::all_of(mask)) where(!mask, twoF) = log(zeta) / f; // simd_members(result, result, [&](auto& d, const auto& s) { d[i] = log(s[i]); }); } } return result; } { if (!stdx::all_of(mask)) where(!mask, twoF) = MaskedLog(mask, zeta) / f; }Extended Features: Handling of Conditions reflection support 39 Olaf Krzikalla, DLR SP, 2024-09-17 templaterequires(!is_stdx_simd ) inline auto where(const M& mask, T& dest) { return simd_access::where_expression (mask 0 码力 | 58 页 | 2.68 MB | 6 月前3
C++26 Preview&&; 85generator function construction #includenamespace stdx = std::experimental; using intv = stdx::fixed_size_simd ; std::random_device rd; // a seed source for the random namespace stdx = std::experimental; using intv = stdx::fixed_size_simd ; int main() { std::array a_data = {-1, 2, 3, 4, 5, 6, 7, -8}; intv a; a.copy_from( a_data.begin(), stdx::vector_aligned 0 码力 | 118 页 | 2.02 MB | 6 月前3
simd: How to Express Inherent Parallelism Efficiently Via Data-Parallel Typesend(), [](auto& v) { 3 v = std::sin(v); 4 }); 5 } • Lambda called with stdx::native_simd. • Epilogue: called with stdx::simd with different Abi so that the remainder of data is processed 0 码力 | 160 页 | 8.82 MB | 6 月前3
Performance MatterssetHandler(SIGSEGV, onFault); for(Function* f: functions) { f->setTrap(); } setTimer(interval); int r = stabilizer_main(argc, argv); return r; } void setTimer(int msec) { struct 1000) / 1000; timer.it_value.tv_usec = 1000 * (msec % 1000); timer.it_interval.tv_sec = 0; timer.it_interval.tv_usec = 0; setitimer(ITIMER_REAL, &timer, 0); } A Typical performance setHandler(SIGSEGV, onFault); for(Function* f: functions) { f->setTrap(); } setTimer(interval); int r = stabilizer_main(argc, argv); return r; } void setTimer(int msec) { struct0 码力 | 197 页 | 11.90 MB | 6 月前3
Data Is All You Need for FusionOutput C Input A Input B Output C Matrix Multiplication 58 fern::Interval (x, C.R_start, C.R_start + C.R_len, len_x)( fern::Interval (y, C.C_start, C.C_start + C.C_len, len_y)( fern::Compute( fern::Producer(void gemm(Matrix A,Matrix B,Matrix C); fern::Interval (x, out.x_start, out.x_start + out.x_len, l fern::Interval (y, out.y_start, out.y_start + out.y_len, l fern::Compute( fern::Producer(Input fern::Producer(Input A Input B Output C Matrix Multiplication 59 fern::Interval (x, C.R_start, C.R_start + C.R_len, len_x)( fern::Interval (y, C.C_start, C.C_start + C.C_len, len_y)( fern::Compute( fern::Producer( 0 码力 | 151 页 | 9.90 MB | 6 月前3
TiDB v8.2 Documentationof the changefeed’s 41 sync-point-interval configuration. This change lets you align Syncpoints across multiple changefeeds that have the same sync-point-interval configuration, simpli- fying and improving the issue that CDC and log-backup do not limit the timeout of check_leader using the advance-ts-interval configuration, causing the resolved_ts lag to be too large when TiKV restarts normally in some cases N N Dynamic pruning Y Y Y Y Y Y E E E E Range COLUMNS partitioning Y Y Y Y Y N N N N N Range INTERVAL partitioning Y Y Y Y E N N N N N Convert a partitioned table to a non-partitioned table Y Y Y N0 码力 | 6549 页 | 108.77 MB | 10 月前3
TiDB v8.3 Documentationpanic during the startup of PD microservices #8406 @HuSharp • Fix the issue that the split-merge-interval configuration item might not take effect when you modify its value repeatedly (such as changing Dynamic pruning Y Y Y Y Y Y Y E E E E Range COLUMNS partitioning Y Y Y Y Y Y N N N N N Range INTERVAL partitioning Y Y Y Y Y E N N N N N Convert a partitioned table to a non-partitioned table Y Y Y page. 2. In the SQL Editor > MySQL Session section, configure the DBMS connection read timeout interval (in seconds) option. This sets the maximum amount of time (in seconds) that a query can take before0 码力 | 6606 页 | 109.48 MB | 10 月前3
TiDB v8.5 Documentationreduce the impact of network jitter on perfor- mance by setting a smaller value to shorten the retry interval. 69 Configuration file or compo- nent Configuration parame- ter Change type Description TiDB TiFlash #9444 @windtalker • Tools • Backup & Restore (BR) • Fix the issue that the PITR checkpoint interval in monitoring abnormally in- creased when TiDB nodes stopped, which does not reflect the actual Dynamic pruning Y Y Y Y Y Y Y Y E E E E Range COLUMNS partitioning Y Y Y Y Y Y Y N N N N N Range INTERVAL partitioning Y Y Y Y Y Y E N N N N N Convert a partitioned table to a non-partitioned table Y Y0 码力 | 6730 页 | 111.36 MB | 10 月前3
共 109 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11
相关搜索词
stdxintervallibraryforintervalsontotallyorderedsetsSenderPatternstoWrangleConcurrencyinEmbeddedDevicesVectorizingCFDCodeWithstdsimdSupplementedbyTransparentLoadingandStoringC++26PreviewHowExpressInherentParallelismEfficientlyViaDataParallelTypesPerformanceMattersIsAllYouNeedFusionTiDBv8Documentation













