TGT服务器的优化
TGT 服务器的优化块设备协议 • NBD • Linux专有块设备协议 • iSCSI • 广泛支持的外部设备协议(块,磁带等)Curve云原生存储支持块设备 • 通过NBD,只支持Linux • 通过SDK API,目前只支持Linux • PFS • 扩大使用范围 • 通过iSCSI支持更多系统,例如Windows, 类UNIX系统等,使用两项基础 技术 • TCP/IP 多个target时,如果挂的设备多,一旦客户端请求量大,就会忙不过来。 • 开源界有尝试修改 • 例如sheepdog的开发者提交过一个patch,但是测试效果不理想,分析 原因,event loop依然是瓶颈对TGT的性能优化 • IO是使用多个epoll 线程,充分发挥多CPU能力 • 当前策略是每个target一个epoll线程,负责Initiator发过来的I/O • 好处是各target上的CPU使用由OS负责分配,CPU分配粒度更细 管理面是主线程,登录,增、删、改target,lun,session,connection,params 都在主线程,而target epoll 线程也要使用这些数据,多线程冲突,数据一 致性问题就来了对TGT的性能优化(续) • 为每一个target增加一把锁 • Target event loop (TEL)线程和管理面线程使用这把锁互斥 • TEL在运行时锁住这把锁,管理面只能等待,等TEL线程进入epoll0 码力 | 15 页 | 637.11 KB | 5 月前3TiDB v8.5 中文手册
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 98 3.3.6 查询数据 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 311 4.7.1 单表查询 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 311 4.7.2 多表连接查询· · · · · · · · · · · · · · · · · · · · · · · · · 317 4.7.3 子查询· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 324 4.7.4 分页查询 · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 9 月前3TiDB v8.4 中文手册
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 94 3.3.6 查询数据 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 307 4.7.1 单表查询 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 307 4.7.2 多表连接查询· · · · · · · · · · · · · · · · · · · · · · · · · 313 4.7.3 子查询· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 320 4.7.4 分页查询 · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 9 月前3TiDB v8.2 中文手册
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 78 3.3.6 查询数据 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 290 4.7.1 单表查询 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 290 4.7.2 多表连接查询· · · · · · · · · · · · · · · · · · · · · · · · · 296 4.7.3 子查询· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 303 4.7.4 分页查询 · · · · · · · · · · · · · · ·0 码力 | 4987 页 | 102.91 MB | 9 月前3腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明
TKE使用eBPF优化 k8s service Jianmingfan 腾讯云 目录 01 Service的现状及问题 优化的方法 02 和业界方法的比较 性能测试 03 04 解决的BUG 未来的工作 05 06 01 Service的现状及问题 什么是k8s Service • 应用通过固定的VIP访问一组pod,应用对Pod ip变化 无感知 • 本质是一个负载均衡器 经历了二十多年的运行,比较稳定成熟 • 支持多种调度算法 优势 IPVS mode 不足之处 • 没有绕过conntrack,由此带来了性能开销 • 在k8s的实际使用中还有一些Bug 02 优化的方法 指导思路 • 用尽量少的cpu指令处理每一个报文 • 不能独占cpu • 兼顾产品的稳定性,功能足够丰富 弯路 • 为什么DPDK不行? • 独占cpu,不适合分布式的lb map • 由于eBPF中没有timer机制 IPVS 如何做SNAT? 优化方法评价 • 优势 • 大大缩短了数据通路,完全绕过了conntrack/iptables • 不足 • 对内核模块做了一定的修改,部署更困难 03 和业界方法比较 V.S. 纯粹的eBPF service 和其他的优化方法对比 V.S. Taobao IPVS SNAT patch • 复用了IPVS0 码力 | 27 页 | 1.19 MB | 9 月前3Hello 算法 1.2.0 简体中文 Kotlin 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 382 页 | 18.48 MB | 9 月前3Hello 算法 1.2.0 简体中文 C# 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 379 页 | 18.48 MB | 9 月前3Hello 算法 1.2.0 简体中文 Dart 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 378 页 | 18.46 MB | 9 月前3Hello 算法 1.2.0 简体中文 JavaScript 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 379 页 | 18.47 MB | 9 月前3Hello 算法 1.2.0 简体中文 Swift 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 379 页 | 18.48 MB | 9 月前3
共 147 条
- 1
- 2
- 3
- 4
- 5
- 6
- 15