Performance MattersPERFORMANCE MATTERS (joint work with Charlie Curtsinger, Grinnell College) emeryberger.com, @emeryberger Emery Berger College of Information and Computer Sciences UMASS AMHERSTA short time ago : un.bmp Ogle is too slow! OGLE’84 is too slow!Transistors (millions) Clock Speed (MHz) Performance used to be easy 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995 gle loading… No mojitos for me… Back to the present…Transistors (millions) Clock Speed (MHz) Performance not easy anymore 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 19950 码力 | 197 页 | 11.90 MB | 6 月前3
OpenAI - AI in the EnterpriseAI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way to work As an AI research and complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter0 码力 | 25 页 | 9.48 MB | 6 月前3
TVM@Alibaba AI Labscooperatively fetch dependent data out_channel WwWly, pm Bly zx) https://docstvm ai/ PVR TOPI Alibaba ALLabs 阿里巴巴人工智能实验室 Blocking Splits the workload into thread blocks (work0 码力 | 12 页 | 1.94 MB | 6 月前3
Manus AI:Agent元年开启2025!3" Manus AI!Agent"#$ChatGPT%& #$% SAC NO. S0570519080006 | SFC NO. BQZ938 &'( SAC NO. S05701220801381 !"#$%&'() !"#$ • !"#$%&'()*AI+!"#$,-./012334%&'(56789:;<=>?@A BC%&'() • DEFGHI)*DEFGJKH abcde&fghi=>.gjklmno5pqLr?E=PstOuv5w%xyabz {|L}=>~}m•O2€.jk• • ‚ƒc„…†Agent…‡ˆAGIO‰Š‹Œ•1 Manus AI!"#$%&'Agent3 Manus AI%&'() • Manus !"#$%&'()*+,-./012345-6708,9):;<=>Manus ?@A+'BCDEFGHIJK,LMN OPQMR<"S>TUVWXY3 "#$%Bloomberg*&'()4 Manus AI%*+,- !"#$%Bloomberg*&'()5 Manus AI%./01 • GAIA !"#%‡•ž$% AI Ÿ G¡¢ž£,¤¥-UL6¦§¨©ª«Level 1cLevel 2cLevel 3¬G-•>Manus AI L®‰¯# §¨©ª°±²³{´µG SOTA œ=> • Manus AI ¶·fgG$%JKA+)€,¸¹!Lº»JK«Level0 码力 | 23 页 | 4.87 MB | 6 月前3
Performance Engineering: Being Friendly to Your HardwareBeing Friendly to Your Hardware Performance Engineering A gentle introduction to hardware for software engineers 2Where does C++ run? 3On an abstract C++ machine 4On an abstract C++ machine? In most practical cases at boot time only Same capacity, different composition => different performance profile From JESD 79-4 DDR4 specificationMemory • Memory system is in the uncore • Cores act Multiple instructions resulting in fewer operations • ISA restrictions may have impact to performance Imaginary ARM mov r20, 0x123456789abcdef0Register renaming 52 Branching Fetch Decode Queue0 码力 | 111 页 | 2.23 MB | 6 月前3
普通人学AI指南普通人学 AI 指南 作者:郭震 日期:2024 年 6 月 8 日 Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 单位 B 和 T . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 AI 工具梳理 6 2.1 问答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 ChatGPT . . . . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 AI 视频工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Sora (OpenAI 公司) . . . .0 码力 | 42 页 | 8.39 MB | 8 月前3
PFS SPDK: Storage Performance Development Kit0 码力 | 23 页 | 4.21 MB | 6 月前3
Modern C++ for Parallelism in High Performance ComputingPoster submission: Modern C++ for Parallelism in High Performance Computing Victor Eijkhout CppCon 2024 Introduction This poster reports on ‘D2D’, a benchmark that explores elegance of expression and context of a High Performance Computing ‘mini-application’. The same code has been implemented using a number of different approaches to parallelism. Implementations are discussed with performance results. Relevance multi-dimensional arrays through ‘mdspan’, it is interesting to explore what C++ can offer for lower level performance critical operations. Scientific computing is an interesting test cases since many algorithms are0 码力 | 3 页 | 91.16 KB | 6 月前3
High-Performance Numerical Integration in the Age of C++26Introduction Firsts steps Context Theoretical foundations Outline of an implementation Conclusion High-Performance Numerical Integration in the Age of C++26 Vincent Reverdy Laboratoire d’Annecy de Physique des past, other languages do far better in terms of everything: functionality, ease of use, and even performance This talk The goal is NOT to revolutionize everything or show a library that beats everything algorithms Runge-Kutta Methods (RK) yn+1 = yn + h s � i=1 biki ki = f(tn + cih, yn + (ai1k1 + ai2k2 + · · · + ai,i−1ki−1)h) Linear Multistep Methods (LLM) yn+s + as−1 · yn+s−1 + as−2 · yn+s−2 + · ·0 码力 | 57 页 | 4.14 MB | 6 月前3
Powered by AI: A Cambrian Explosion for C++ Software Development Tools`University of Massachusetts Amherst Powered by AI: A Cambrian Explosion for C++ Software Development Tools Emery BergerCretaceous–Paleogene (K-Pg) extinction eventCretaceous–Paleogene (K-Pg) extinction ALLOCATED MEMORY USAGE GPU UTIL %, PEAK MEMORY (MB/s) MEMORY PYTHON NATIVE AI-powered optimizations!AI-powered optimizations... COMING SOON!evolveevolve profiler that suggests optimizationsevolve0 码力 | 128 页 | 23.40 MB | 6 月前3
共 350 条
- 1
- 2
- 3
- 4
- 5
- 6
- 35













