清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。 多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集 目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持; 四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表; 在复杂爬虫任务上,DeepSeek o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。 Kimi k1.5 能够提取所有网址,代码运 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。0 码力 | 85 页 | 8.31 MB | 8 月前3
julia 1.10.10Float32 julia> 2.5f-4 0.00025f0 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 cleaner:CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 24 julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22. In all cases the ambiguity is resolved0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.10.9Float32 julia> 2.5f-4 0.00025f0 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 julia> x = 3 3 julia> 2x^2 - 3x + 1CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 24 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22. In all cases the ambiguity is resolved0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.11.4AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22. In all cases the ambiguity is resolved0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.5 DocumentationAND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.6 Release NotesAND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS0 码力 | 2007 页 | 6.73 MB | 3 月前3
julia 1.13.0 DEVAND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS0 码力 | 2058 页 | 7.45 MB | 3 月前3
Julia 1.12.0 RC1AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS0 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta4AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS0 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta3AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS0 码力 | 2057 页 | 7.44 MB | 3 月前3
共 170 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17













