积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(119)Python(57)C++(22)Julia(18)云计算&大数据(16)Conda(16)Django(13)综合其他(12)VirtualBox(11)前端开发(10)

语言

全部英语(104)中文(简体)(36)中文(繁体)(23)中文(简体)(3)fj(1)ro(1)zh(1)英语(1)

格式

全部PDF文档 PDF(163)其他文档 其他(6)PPT文档 PPT(1)
 
本次搜索耗时 0.417 秒,为您找到相关结果约 170 个.
  • 全部
  • 后端开发
  • Python
  • C++
  • Julia
  • 云计算&大数据
  • Conda
  • Django
  • 综合其他
  • VirtualBox
  • 前端开发
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 中文(简体)
  • fj
  • ro
  • zh
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。 Kimi k1.5 能够提取所有网址,代码运 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 julia 1.10.10

    Float32 julia> 2.5f-4 0.00025f0 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 cleaner:CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 24 julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22. In all cases the ambiguity is resolved
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    Float32 julia> 2.5f-4 0.00025f0 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 julia> x = 3 3 julia> 2x^2 - 3x + 1CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 24 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22. In all cases the ambiguity is resolved
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22. In all cases the ambiguity is resolved
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    AND FLOATING-POINT NUMBERS 21 Values can be converted to Float32 easily: julia> x = Float32(-1.5) -1.5f0 julia> typeof(x) Float32 Hexadecimal floating-point literals are also valid, but only as Float64 makes writing polynomial expressions much cleaner: julia> x = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: julia> 2^2x 64 The with the equivalent E form. • The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied by the variable f22.CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
共 170 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 17
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研julia1.1010Julia1.11DocumentationReleaseNotes1.13DEV1.12RC1Beta4Beta3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩