2024 中国开源开发者报告Insight 2024 中国开源开发者报告重点聚焦大模型,本章节以大模 型 LLM 开发技术栈作为切入点,将深入探讨以下中国 AI 大模型领域的代表性开源项目社区。 这些开源项目社区覆盖了深度学习框架、向量数据库、AI辅 助编程、LLM 应用开发框架、模型微调、推理优化、LLM Agent,以及检索增强生成(RAG)等多个关键技术栈。 为了更全面客观地展示中国大模型 LLM 开发技术栈的开源 年,中国学术界和产业界大力推进自主研发,在技术创新和模型能力上实现了显著飞 跃,并在全球范围内取得了显著成就。 Hugging Face Open LLM 排行榜数据显示,从智谱 的 GLM 系列、阿里巴巴的 Qwen 系列到深度求索的 DeepSeek 系列,这些自主研发的模型 在国内外各项评测中表现卓越。 每个月来自中国主要研究机构和 公司的开源模型/数据集数量。 图片源自 Hugging Face 中文社 区模型社群: 化需求,帮助人工智能在实际应用场景中落地。 开源多元化与应用细分 中国开源模型的发展不仅体现在技术突破上,还在生态建设中展现出巨大的活力。中国开源 模型从竞争激烈的“百模大战”逐步迈向多元化和深度细分,国内社区在今年发布了大量高质量 开源模型,尤其是多模态理解与生成模型: 多模态理解:Qwen2-VL、Ovis、InternVL2、DeepSeek JanusFlow、GOT-OCR2_0;0 码力 | 111 页 | 11.44 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单1、读取即将上映的2025年电影数据集 2、对数据集进行深入分析和数据挖掘 任务 DeepSeek R1 能够准确对数据进行分类,从多个维度进行梳理和分析,借助可视化图表进行数据挖掘,基于分析结 果提供可行建议,但整体数据挖掘深度较浅,缺少对不同类型数据直接关联性的探究。 第一轮对话: 第二轮对话: (基于初步分析结果,选择其中一部分或某个方 向进行深入的数据挖掘) 提示词 测试结果受到数据样本、测试环境、AI 的最终依据。 数据挖掘 Claude 3.5 sonnet 基于数据集,在整体数据概括后提供多个 深入数据挖掘方向,根据需求输入研究倾 向,高效生成多个维度的数据分析,语言 简洁,挖掘深度较浅。 Kimi k1.5 提供数据的潜在用途方向,深入分 析过程中,从多个维度(如时间、 语言、地区)深入挖掘数据意义和 关联性,进一步总结趋势结论并提 出相关建议。 Kimi k1 数据读取输出逻辑性强、指标清晰 数据分析任务完成得较为简单 爬虫数据采集未形成明确结论 数据挖掘深度较浅 绘制出可视图表不稳定 Open AI o3 mini 数据分析高效、全面、准确 数据可视化能力突出、直接生成 网络爬虫任务爬取数据结果为空 暂不支持上传数据附件 数据挖掘深度较浅 Kimi k1.5 数据挖掘能力出色 快速读取文件数据,提取网址链接 长文本数据处理能力突出0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 + 评估标准 要求逻辑推演和量化分析 直接建议,依赖模型经验归纳 2. 分析需求 需深度理解数据/信息、 发现模式或因果关系 问题 + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 + 评估标准 要求逻辑推演和量化分析 直接建议,依赖模型经验归纳 2. 分析需求 需深度理解数据/信息、 发现模式或因果关系 问题 + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题0 码力 | 103 页 | 5.40 MB | 8 月前3
Hello 算法 1.2.0 简体中文 JavaScript 版com/krahets/hello‑algo 仓库。 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象 若你是算法初学者,从未接触过 在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保 了本书内容的准确性与品质。在此感谢所有老师和前辈的杰出贡献! 本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这 本优秀的著作。 衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。 0.2 如何使用本书 Tip 为了获得最佳的阅读体验,建议你通读本节内容。0 码力 | 379 页 | 18.47 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Ruby 版com/krahets/hello‑algo 仓库。 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象 若你是算法初学者,从未接触过 在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保 了本书内容的准确性与品质。在此感谢所有老师和前辈的杰出贡献! 本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这 本优秀的著作。 衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。 0.2 如何使用本书 Tip 为了获得最佳的阅读体验,建议你通读本节内容。0 码力 | 372 页 | 18.44 MB | 10 月前3
Hello 算法 1.2.0 简体中文 C# 版com/krahets/hello‑algo 仓库。 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象 若你是算法初学者,从未接触过 在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保 了本书内容的准确性与品质。在此感谢所有老师和前辈的杰出贡献! 本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这 本优秀的著作。 衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。 0.2 如何使用本书 Tip 为了获得最佳的阅读体验,建议你通读本节内容。0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Dart 版com/krahets/hello‑algo 仓库。 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象 若你是算法初学者,从未接触过 在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保 了本书内容的准确性与品质。在此感谢所有老师和前辈的杰出贡献! 本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这 本优秀的著作。 衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。 0.2 如何使用本书 Tip 为了获得最佳的阅读体验,建议你通读本节内容。0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Kotlin 版com/krahets/hello‑algo 仓库。 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象 若你是算法初学者,从未接触过 在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保 了本书内容的准确性与品质。在此感谢所有老师和前辈的杰出贡献! 本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这 本优秀的著作。 衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。 0.2 如何使用本书 Tip 为了获得最佳的阅读体验,建议你通读本节内容。0 码力 | 382 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Swift 版com/krahets/hello‑algo 仓库。 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象 若你是算法初学者,从未接触过 在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保 了本书内容的准确性与品质。在此感谢所有老师和前辈的杰出贡献! 本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这 本优秀的著作。 衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。 0.2 如何使用本书 Tip 为了获得最佳的阅读体验,建议你通读本节内容。0 码力 | 379 页 | 18.48 MB | 10 月前3
共 100 条
- 1
- 2
- 3
- 4
- 5
- 6
- 10













