Curve核心组件之snapshotcloneCurve核心组件 - SnapShotCloneServer 许超杰CURVE基本架构 01 02 03 04 快照和克隆的特点 快照克隆服务器架构 快照的实现 05 克隆的实现CURVE基本架构 • 元数据节点 MDS • 管理和存储元数据信息 • 感知集群状态,合理调度 • 数据节点 Chunkserver • 数据存储 • 副本一致性,raft • 客户端 Client 任务管理层负责调度SnapshotTask和CloneTask,并向上提供如 cancel task等功能。 SnapshotTaskManager & CloneTaskManager: • 快照克隆核心模块,负责向下调用DataStore,MetaStore等底层 模块,实现快照和克隆的具体功能。 SnapshotCore & CloneCore:快照克隆服务器架构 • SnapshotDa0 码力 | 23 页 | 1.32 MB | 6 月前3
Curve核心组件之chunkserverCurve核心组件之ChunkServer 查日苏CURVE CURVE是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟存储底座 • 可扩展存储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接 openstack 和 k8s 网易内部线上无故障稳定运行500+天 • 已开源 • github主页: https://opencurve.github • github代码仓库: https://github.com/opencurve/curveCURVE基本架构 01 02 03 04 ChunkServer架构 ChunkServer核心模块 新版本ChunkServer性能优化CURVE基本架构 • 元数据节点 MDS • 管理和存储元数据信息 • 感知集群状态,合理调度 • 数据节点 Chunkserver • 数据存储 • 客户端 Client • 对元数据增删改查 • 对数据增删改查 • 快照克隆服务器CURVE基本架构 01 02 03 04 ChunkServer架构 ChunkServer核心模块 新版本ChunkServer性能优化Curve ChunkServer是数据节点, 对外提供数据读写和节点管理功 能,底层基于ext4文件系统,操 作实际的磁盘。 ChunkServ0 码力 | 29 页 | 1.61 MB | 6 月前3
Curve核心组件之mds – 网易数帆Curve核心组件之 MDS 陈威Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github er上的负载信息、 copyset信息等。 • Scheduler: 调度模块。用于自动容错和负载均衡。TOPOLOGY topology用于管理和组织机器,利用底层机器的放置、网络的规划以面向业务提供如下功能和非功能需求。 1. 故障域的隔离:比如副本的放置分布在不同机器,不同机架,或是不同的交换机下面。 2. 隔离和共享:不同用户的数据可以实现固定物理资源的隔离和共享。 • pool: 超过miss时间 未超过offline时间 UNSTABLE ONLINE OFFLINESCHEDULE Schedule(系统调度)是为了实现系统的自动容错和负载均衡,这两个功能是分布式 存储系统的核心问题,也是 curve 是否能上生产环境的决定因素之一。 • 自动容错保证常见异常(如坏盘、机器宕机)导致的数据丢失不依赖人工处理,可 以自动修复。 • 负载均衡和资源均衡保证集群中的磁盘、c0 码力 | 23 页 | 1.74 MB | 6 月前3
Curve核心组件之Client - 网易数帆U进 程进行重启。NEBD 整体介绍 在QEMU和Curve Client中间加入热升级模块,避 免直接依赖 热升级模块是CS结构: NEBD Client(part1):只包含轻量的业务逻辑, 以链接库的形式提供给QEMU使用 NEBD Server(part2):将NEBD Client的请求转 发到Curve Client 升级过程只需要重启NEBD Server即可,IO可在0 码力 | 27 页 | 1.57 MB | 6 月前3
阿里巴巴核心应用洛地 Service Mesh 的挑战与机过周遥 xuanyin.zy@alibaba-inc.com 阿里巴巴核心应用落地 Service Mesh 的挑战与机遇 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •2010 四川大学毕业 •2010-2016 社区、我的淘宝、中间件软负载 •2016-2019 自主创业、挖财中间件负责人 •2019-今 阿里服务网格团队 专注软负载、服务治理、分布式;Nacos Mesh 实战作者》;爱好骑 行、钢琴•现状及行业态度 •带来的变化和发展机遇 •核心应用落地所克服的挑战 主题#1 现状及行业态度•时隔两月 Istio 发布了 1.4,迭代迅速 •国内 Service Mesh 相关书籍出版三本以上 •各大厂积极部署推进,蚂蚁金服影响力最大 •阿里巴巴实现对核心应用于双十一上验证 •云计算平台推出商业产品,但仍未普适 行业现状行业态度 普遍看好,仍存疑惑。 Biz框架思维转向平面思维 Service Mesh Biz Non Ali Biz将中间件能力下层到基础层 业务 (Java/Go/C++ 等) Serverless 业务 (Java/Go/C++ 等) 业务 (Java/Go/C++, etc) Serverless 业务 (Java/Go/C++, etc) 网格化的基础组件 (基于插件) 网格化的基础组件 (基于插件)0 码力 | 22 页 | 6.61 MB | 6 月前3
Nacos架构&原理
以及动态配置数据的推送。这里面最简单的需求就是将⼀个配置准时的推送到不同的节点。即便如 此简单需求,随着业务规模变大也会变的非常复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 DNS(Dubbo+Nacos+Spring-cloud- alibba/Sentinel/Seata)组合始终走在前列,引领着微服务领域的发展趋势。Nacos 作为核心引擎 孵化于 2008 年的阿里五彩石项目,自主研发完全可控,经历十多年双 11 洪峰考验,沉淀了高性能、 高可用、可扩展的核心能力,2018 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 业化三位⼀体,讲清开源的价值,能够持续投入开源,解决第⼀阶段难以持续的问题。 Nacos 也 是在这个大势下应运而生,并且快速成为国内首选。 2018 年产品规划会⼀起到舟山小岛上,关于是否开源的时候面临几个核心问题进行深度讨论,第⼀ 个是我们开源是否晚了,如何定位和打造竞争力;第二是内部有三个产品(Configserver 非持久注 册中心,VIPServer 持久化注册中心,Diamond 配置中心),是开源三个产品还是合成⼀个产品开0 码力 | 326 页 | 12.83 MB | 10 月前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊率低,故障排查慢,阻碍了软件价值的流动 无法满足用户对于业务快速研发、 稳定交付的要求 场景 1 如果生产中一台Web应用服务器故障,恢复这台服务器需要 做哪些事情? 场景 2 如果应用负载升高/降低,如何及时、按需扩展/收缩所 用资源? 场景 3 如果业务系统要升级,如何平滑升级?万一升级失败是 否能够自动回滚?整个过程线上业务持续运行不中断。 传统稳态业务环境难以高效承载敏态应用 发现故障 (假死) 如果生产中一台Web应用服务器故障,恢复这台服务器需要 做哪些事情? 场景 2 如果应用负载升高/降低,如何及时按需扩展/收缩所用 资源? 场景 3 如果业务系统要升级,如何平滑升级?万一升级失败是 否能够自动回滚?整个过程线上业务持续运行不中断。 传统稳态业务环境难以高效承载敏态应用 发现故障 (假死) 创建 新实例 配置 运行环境 部署当前 应用版本 添加 监控 配置 日志采集 测试确认 服务正常运行 我们需要一种新型的、为云而生的业务承载平台,去应对上述问题。 微服务应 用 大型 单体 应用 VM/服务器 VM/服务 器 VM/服务 器 VM/服务 器 目 标 支持微服务级别的细粒度资源隔离 支持快速扩缩容 支持热升级,服务更新不影响业务可用性 支持服务的快速地部署、扩展、故障转移 支持更细致、自动化的运维,快速恢复 …… 过去 现在 未来 云原生的业务承载平台?0 码力 | 42 页 | 11.17 MB | 6 月前3
24-云原生中间件之道-高磊间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由于云原生托管的应用是碎片化的,环境变化也是碎片化的,而且其业务类型越来越多,比如已经延展到边 缘计算盒子,此时攻击面被放大,在云原生环境下安全是一个核心价值,需要立体纵深式的安全保障。 由于云原生DevOps环境追求效率以及运行态的动态治理能力,导致传统安全实施方法、角色、流程、技术 都发生了很多变化,适应这些变化是落地云原生安全的关键! 路径爆炸问题,并一定与实际相符合,误报率较 高。 DAST(动态安全应用 程序安全测试) 黑盒测试,通过模拟业务流量发起请求,进行模糊测试,比如故障注入 或者混沌测试 语言无关性,很高的精确度。 难以覆盖复杂的交互场景,测试过程对业务造成 较大的干扰,会产生大量的报错和脏数据,所以 建议在业务低峰时进行。 IAST(交互式应用程序 安全测试) 结合了上面两种的优点并克服其缺点,将SAST和DAST相结合,通过插桩 SCA就是解决此类问题的办法,通过自动化分析组件版本并与漏洞库相 比较,快速发现问题组件,借助积累的供应链资产,可以在快速定位的 同时,推动业务快速修复。 安全左移的一种,在上线前发现依赖组件的安全 问题,快速借助供应链资产库,帮助业务修复问 题。 需要进行大量的安全特征以及资产库的建设或者 三方集成。(涉及业务能力) RASP(运行时安全应 用程序自我保护) 可以看做是IAST的兄弟,RASP通过程序上下文和敏感函数检查行为方式0 码力 | 22 页 | 4.39 MB | 6 月前3
2024 中国开源开发者报告大模型训练中的开源数据和算法:机遇及挑战 57 | 2024 年 AI 编程工具的进化 62 | AI 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 68 | 谈开源大模型的技术主权问题 72 | 2024:大模型背景下知识图谱的理性回归 77 | 人工智能与处理器芯片架构 89 | 大模型生成代码的安全与质量 93 | 2024 续支持以及国内人工智能行业对模型研发的巨额投 入下,从基础算法到行业应用、从算力基础设施到数据资源整合,中国人工智能生态体系正在迅 速完善。这一趋势表明,未来中国有可能在全球人工智能领域占据更为核心的地位。 开源生态的繁荣与协作 随着开源模型影响力的提高,中国开源社区的活跃度也明显提升。无论是企业、研究机构还 是个体开发者都更加积极地参与到开源工作中。 以阿里巴巴的通义千问 Qwen 为例,据不完全统计,截止 技 术创新到社区建设,还是从行业实践到合规探索,中国开源生态体系的完善正在为全球人工智能 发展注入源源不断的动力。 在 Hugging Face,我们坚信开源是推动人工智能技术进步和生态繁荣的核心力量。开源 不仅能够打破技术壁垒,促进全球开发者之间的协作与创新,还能推动技术的普惠化,让更多的 24 / 111 人能够平等地享受人工智能带来的便利与机遇。 在未来,中国开源模型有望继续引0 码力 | 111 页 | 11.44 MB | 8 月前3
36-云原生监控体系建设-秦晓辉秦晓辉,常用网名龙渊秦五、UlricQin,山东人,12年 毕业自山东大学,10年经验一直是在运维研发相关方向, 是Open-Falcon、Nightingale、Categraf 等开源软件 的核心研发,快猫星云联合创始人,当前在创业,为客 户提供稳定性保障相关的产品 个人主页:https://ulricqin.github.io/ 大纲 • 云原生之后监控需求的变化 • 从Kubernetes架构来看要监控的组件 从Kubernetes架构来看要监控的组件 • Kubernetes所在宿主的监控 • Kubernetes Node组件监控 • Kubernetes控制面组件监控 • Kubernetes资源对象的监控 • Pod内的业务应用的监控 • 业务应用依赖的中间件的监控 云原生之后监控需求的 变化 云原生之后监控需求的变化 •相比物理机虚拟机时代,基础设施动态化,Pod销毁重建非常频繁 •原来使用资产视角管理监控对象的系统不再适用 l 服务端组件,控制面:API Server、Scheduler、 Controller-Manager、ETCD l 工作负载节点,最核心就是监控Pod容器和节点本 身,也要关注 kubelet 和 kube-proxy l 业务程序,即部署在容器中的业务程序的监控,这 个其实是最重要的 随着 Kubernetes 越来越流行,几乎所有云厂商都提供 了托管服务,这就意味着,服务端组件的可用性保障交0 码力 | 32 页 | 3.27 MB | 6 月前3
共 167 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17













