2024 中国开源开发者报告编程工具的进化 62 | AI 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 68 | 谈开源大模型的技术主权问题 72 | 2024:大模型背景下知识图谱的理性回归 77 | 人工智能与处理器芯片架构 89 | 大模型生成代码的安全与质量 93 | 2024 年 AI 大模型如何影响基础软件行业中 的「开发工具与环境」 98 | 推理中心化:构建未来 推理中心化:构建未来 AI 基础设施的关键 Part 1:中国开源开发者生态数据 04 | Gitee 数据篇 Part 3:国内 GenAI 生态高亮瞬间 104 | 中国 GenAI 消费应用人气榜 Top10 15 | OSS Compass Insight 106 | AI 创新应用开发大赛获奖作品 局长,OSCHINA 副主编 肖滢,OSCHINA 副主编 李泽辰,Gitee 设计:张琪 开发者是开源生态的重要支柱。 本章结合 、 的数据分 析,勾勒 2024 年中国开源开发者的整体画像趋势轮廓,主要 反映中国开源开发者使用开源大模型概况、开源项目/组织健康 度,以及中国开源社区的生态评估等情况。 Gitee 数据篇 本报告数据来源:2024年1月至2024年12月 Gitee及Gitee AI平台相关公开数据 4 / 111 开发者是社区的力量源泉0 码力 | 111 页 | 11.44 MB | 8 月前3
破解 Kubernetes 应用开发困局-王炜Kubernetes 应用开发困局 实时热加载和一键 Debug 2021.08.05 王炜 2 腾讯云 CODING DevOps 高级架构师 CNCF 大使 Nocalhost 项目负责人 自我介绍 1. K8s 环境开发困局 2. 主流云原生开发方式 3. 热加载原理 4. 开发和调试演示 5. 开源共建 目录 K8s 环境开发困局 01 开发举步维艰 5 微服务-Docker Docker-Kubernetes K8s 环境的开发困局 容器越来越多,服务编排、发现、稳定性监控、自愈等成为新的挑战。 Kubernetes 提供容器编排的解决方案。 6 面向运维 •开发难 概念繁多,声明式定义学习成本高。 •调试难 无法像本地一样调试,开发效率低。 完全面向运维提供能力,对开发增加了巨大的负担。 云原生环境下的学习成本,招聘成本,用人成本急剧上升。 7 云原生开发技能广度要求急剧提升 8 云原生开发工具依然缺失 主流云原生开发方式 02 现状 1 0 全手工流程 编码后,手动构建镜像、推送到镜像 仓库、修改工作负载镜像版本,调度 10 分钟/次 自动化 CI/CD 流程 编码后,推送到代码仓库,自动触发 CI/CD 流程,等待生效。 5 分钟/次 Minikube + Telepresence Minikube 拉起本地 K8s 开发环境, Telepresence0 码力 | 20 页 | 3.58 MB | 9 月前3
16-Nocalhost重新定义云原生开发环境-王炜Nocalhost - 重新定义云原⽣开发环境.md 2021/1/20 1 / 7 Nocalhost - 重新定义云原⽣开发环境 前⾔ 随着业务的快速发展,技术部⻔的组织架构在横向及纵向不断扩⼤和调整,与此同时,企业的⽣产资料:应 ⽤系统,也变得越来越庞⼤。为了让应⽤系统适配企业组织架构的调整,梳理组织架构对于应⽤权责的边 界,⼤部分组织会选择使⽤“微服务”架构来对应⽤系统进⾏横向拆分,使得应⽤系统的维护边界适配组织架 “微服务”带来便利的同时,对开发⼈员⽽⾔,还带来了额外的挑战:如何快速启动完整的开发环境?开发的 需求依赖于其他同事怎么联调?如何快速调试这些微服务? ⽽对于管理⼈员来说,也同样带来了⼀系列的挑战:如何管理开发⼈员的开发环境?如何让新⼊职的同事快 速进⾏开发? 试想⼀下,要开发由 200 个“微服务”组成的云原⽣应⽤,会遇到哪些困难呢? Localhost 时代 在单体应⽤的时代,对于开发者来说是极为友好的 ,�开发者使⽤本机运⾏应⽤,修改代码后实时⽣效,通过 浏览器访问 Localhost 实时查看代码效果。 单体应⽤和“微服务”应⽤不同,单体应⽤是 “ALL-IN-ONE” 组织⽅式,所有的调⽤关系仅限于在⾃身的类和函 数,应⽤对硬件的要求⼀般也不会太⾼。 ⽽开发“微服务”应⽤则⼤不相同,由于相互间的依赖关系,当需要开发某⼀个功能或微服务时,不得不将所 有依赖的服务都启动起来。随着微服务数量的增0 码力 | 7 页 | 7.20 MB | 6 月前3
TiDB中文技术文档2.0.2 2.0.1 2.0 2.0 RC5 2.0 RC4 2.0 RC3 2.0 RC1 1.1 Beta 1.1 Alpha 1.0 Pre-GA RC4 RC3 RC2 RC1 TiDB 路线图 性能测试 TiDB Sysbench 性能测试报告 - v1.0.0 TiDB TPC-H 50G 性能测试报告 - v2.0 TiDB Sysbench 性能对比测试报告 - v2.0.0 对比 2.0 RC1 1.1 Beta README - 9 - 本文档使用 书栈(BookStack.CN) 构建 1.1 Alpha 1.0 Pre-GA RC4 RC3 RC2 RC1 TiDB 路线图 用户案例 北京银行 海航 今日头条 转转 Mobike 饿了么(一) 饿了么(二) 易果生鲜 同程旅游 去哪儿 G7 一面数据 凤凰网 猿辅导 Mobikok 二维火 客如云 Ping++ 乐视云 OLAP 分析可以通过 TiSpark 项目 来完成。 TiDB 对业务没有任何侵入性,能优雅的替换传统的数据库中间件、数据库分库分表等 Sharding 方案。同时它也 让开发运维人员不用关注数据库 Scale 的细节问题,专注于业务开发,极大的提升研发的生产力。 三篇文章了解 TiDB 技术内幕: 说存储 说计算 谈调度 TiDB 简介 TiDB 整体架构 README - 11 - 本文档使用 书栈(BookStack0 码力 | 444 页 | 4.89 MB | 6 月前3
09-harbor助你玩转云原生-邹佳资源隔离与多租户管理模型 - 制品的高效分发(复制、缓存与P2P集成) - 制品的安全分发(签名、漏洞扫描与安全策略) - 资源清理与垃圾回收 - 构建高可用(HA)制品仓库服务 - Harbor集成与扩展 - 路线图 - 参与贡献Harbor社区 云原生与制品管理 [1] 云原生(cloud-native)技术使组织能够在现代化和动态的环境下(如公有云、私有云 和混合云)构建和运行可扩展的应用程序。云原生典型技术包括容器、服务网络、 goharbor/harbor-helm 3 K8s Operator • 通过K8s CRD实现编排 • 目标为K8s集群 • 专注于HA模式支持 • goharbor/harbor- operator (开发中) 4 资源隔离与多租户管理 项目 存储 访问控制 制品资源 Members Images Guest: Developer: 插件式扫描器框架 DoSec P2P引擎 • 标准化Adapter接口定义 制品类型 • 遵循OCI规范 • annotation化的数据扩展 • UI自动渲染扩展数据 路线图 管理 分发 扩展性 Interrogation Service++(探针) Observability K8s Operator 1 2 3 来源: https://github0 码力 | 32 页 | 17.15 MB | 6 月前3
TiDB v8.5 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 82 2.6.1 TiDB 开发者· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 82 2.7 路线图· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 103 4 应用开发 103 4.1 开发者手册概览 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 10 月前3
TiDB v8.4 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 78 2.6.1 TiDB 开发者· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2.7 路线图· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 99 4 应用开发 99 4.1 开发者手册概览 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 10 月前3
TiDB v8.2 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 62 2.6.1 TiDB 开发者· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 62 2.7 路线图· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83 4 应用开发 83 4.1 开发者手册概览 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 4987 页 | 102.91 MB | 10 月前3
Nacos架构&原理
阿里云开发者“藏经阁” 海量电子手册免费下载 特别鸣谢: 目录 作者 6 推荐序 7 前⾔ 9 序言 9 简介 13 Nacos 简介 13 Nacos 架构 17 Nacos 总体设计 17 Nacos 架构 17 Nacos 配置模型 21 Nacos 内核设计 28 Nacos ⼀致性协议 28 Nacos 自研 Distro 协议 38 Nacos 通信通道 年的阿里五彩石项目,自主研发完全可控,经历十多年双 11 洪峰考验,沉淀了高性能、 高可用、可扩展的核心能力,2018 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴中间件负责人 - 胡伟琪(白慕) 有非常出色的积累,2018 年初中间件团队决定把这⼀领域的技术进行重新梳理并开源,这就是本书 介绍的主角 Nacos,经过三年时间的发展,Nacos 已经被大量开发者和企业客户用于生产环境,本 书详尽介绍了 Nacos 的架构设计、功能使用和最佳实践,推荐分布式应用的开发人员、运维人员和 对该领域感兴趣的技术爱好者阅读。 推荐序 < 8 Facebook 工程师 & CNCF 前 TOC 成员 - 李响0 码力 | 326 页 | 12.83 MB | 10 月前3
普通人学AI指南8B 和 70B 模型。 图 2,时间线主要根据技术论文的发布日期(例如提交至 arXiv 的日期)来 确定大型语言模型(大小超过 10B)的发展历程。如果没有相应的论文,我们 将模型的日期设定为其公开发布或宣布的最早时间。我们用黄色标记那些公开 可用的模型检查点。由于空间限制,我们只包括那些公开报道评估结果的大型 语言模型。 Figure 2: 各个大型语言模型发布时间线 5 1.4 基础概念 工具,分别包括:问答,图像,视频,AI 编程,AI 提 示词和 AI 大模型,一共梳理挑选共计 38 个 AI 工具,其中很多都是开源! 2.1 问答 2.1.1 ChatGPT ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 GPT(Generative Pre-trained Transformer)架构。这种模型通过分析大量的文本数据来学习语 言结构和信息,使其能够生成连贯的文本、回答问题、撰写文章、进行对话等。 场景中提 供辅助,包括聊天机器人、写作辅助、信息查询等。 2.1.2 Claude Claude 是 Anthropic 公司开发的一系列大型语言模型,它设计用于执行多种涉 及语言、推理、分析和编码的任务。 2.1.3 通义千问 通义千问(Qwen)是阿里云开发的一系列预训练的大型语言模型,用于聊天、 生成内容、提取信息、总结、翻译、编码、解决数学问题等多种任务。这些模型 在多种语言数据上0 码力 | 42 页 | 8.39 MB | 8 月前3
共 138 条
- 1
- 2
- 3
- 4
- 5
- 6
- 14













