积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(11)Julia(10)系统运维(5)网络与安全(5)综合其他(2)人工智能(2)Rust(1)

语言

全部中文(繁体)(10)英语(6)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(15)DOC文档 DOC(3)
 
本次搜索耗时 0.382 秒,为您找到相关结果约 18 个.
  • 全部
  • 后端开发
  • Julia
  • 系统运维
  • 网络与安全
  • 综合其他
  • 人工智能
  • Rust
  • 全部
  • 中文(繁体)
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3. 函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.1. 闭包:可以捕获其环境的匿名函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 20.4. 高级函数与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 562 页 | 3.23 MB | 1 月前
    3
  • pdf文档 Trends Artificial Intelligence

    n=500 USA adults,. Figures estimated based on overall AI tool usage adjusted for an average 72% usage rate of ChatGPT amongst respondents who use any AI tools. Actual ChatGPT penetration may vary by cohort Retention (ChatGPT as Proxy) = 80% vs. 58% Over Twenty-Seven Months, per YipitData Note: Retention Rate = Percentage of users from the immediately preceding week that were users again in the current week in 92 days to 200k GPUs. This is just the beginning… …We doubled our compute at an unprecedented rate, with a roadmap to 1M GPUs. Progress in AI is driven by compute and no one has come close to building
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 julia 1.13.0 DEV

    whether the number of waitersCHAPTER 33. PROFILING 438 Figure 33.1: CPU Profile is excessive given the rate at which work items are being produced in the channel. If we run this, we obtain the following PProf overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    whether the number of waitersCHAPTER 33. PROFILING 439 Figure 33.1: CPU Profile is excessive given the rate at which work items are being produced in the channel. If we run this, we obtain the following PProf overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    whether the number of waitersCHAPTER 33. PROFILING 438 Figure 33.1: CPU Profile is excessive given the rate at which work items are being produced in the channel. If we run this, we obtain the following PProf overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta3

    whether the number of waitersCHAPTER 33. PROFILING 438 Figure 33.1: CPU Profile is excessive given the rate at which work items are being produced in the channel. If we run this, we obtain the following PProf overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 julia 1.12.0 beta1

    whether the number of waitersCHAPTER 33. PROFILING 438 Figure 33.1: CPU Profile is excessive given the rate at which work items are being produced in the channel. If we run this, we obtain the following PProf overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here
    0 码力 | 2047 页 | 7.41 MB | 3 月前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    ceiling  Does not require a deliverable for payment  Profit is built into the hourly labor rate so it does not require extensive upfront fee negotiation  Unpopular contract type across the create the spending plan during the acquisition phase. This spending plan outlines how and at what rate the program will expend its funding over time. Because a reasonable and supportable budget is essential
    0 码力 | 74 页 | 3.57 MB | 6 月前
    3
  • pdf文档 Julia 1.11.4

    overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here Here is a more in-depth example, showing how we can tune the sample rate. A good number of samples to aim for is around 1 - 10 thousand. Too many, and the profile visualizer can get overwhelmed, and profiling
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    overhead, so a sample_rate argument can be passed to speed it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which is slow); sample_rate=0.1 will record only We collect the profile (specifying a sample rate), then we visualize it. using Profile, PProf Profile.Allocs.clear() Profile.Allocs.@profile sample_rate=0.0001 my_function() PProf.Allocs.pprof() Here Here is a more in-depth example, showing how we can tune the sample rate. A good number of samples to aim for is around 1 - 10 thousand. Too many, and the profile visualizer can get overwhelmed, and profiling
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
Rust程序设计程序设计语言简体中文文版中文版简体中文版1.85TrendsArtificialIntelligencejulia1.13DEVJulia1.12RC1Beta4Beta3beta1MITREDefenseAgileAcquisitionGuideMar20141.11Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩