Manus AI:Agent元年开启ChatGPT!"GAIçèûÞ&> • AI*+uv5´µ#$GManusuv,!"#$%AI*+,)`%&R<º»JK> • ÑÒÓ*5'de() • ManusêëF-*Bz'()+,-,Manus./I6¦Gdeáâ(),012÷345de> !"#$%Bloomberg*&'()7 Manus AI%6789: • 67,89:;<щ=>?Š@&ACEO,BC‡DF<Ñg[> SwarmcMulti-agent Orchestrator> • 7⃣ de´.«Model Routing¬5š›6¦ AI de•„G()µ¶C𷏤> • *˜5MartiancOpenRoutercNot Diamond> • 8⃣ ¡¹gde«Foundational Models¬5bº AI de,»4 AI *+¼½()> • 9⃣ ETL«]^á²2¾¿¬5š›]^¥+CA+ AI ÓÔC#+>12 !"#$%Bloomberg*&'() >$2%AgentFG?@HIJKLM ]^ º»¨ 2C 2B ÕÖ Fp º» #&Õ¥+ $%AI§¨ #&DE AgentŸ Ö×AgentS) cCÕ 'Agent ØCKx¦13 !"#$%Bloomberg*&'() >$2%AgentFG?@HIJKLM p Workday#$ Agent0 码力 | 23 页 | 4.87 MB | 5 月前3
julia 1.10.10-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: Additionally, full support for Complex and Rational representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x)-1 for x near zero ldexp(x,n) x*2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b,x) base b logarithm of x log2(x) base0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.10.9-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: Additionally, full support for Complex and Rational representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x)-1 for x near zero ldexp(x,n) x*2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b,x) base b logarithm of x log2(x) base0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.11.5 Documentation-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.6 Release Notes-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.4-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2007 页 | 6.73 MB | 3 月前3
julia 1.13.0 DEV-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2058 页 | 7.45 MB | 3 月前3
Julia 1.12.0 RC1-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta4-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta3-2^63 2^63 - 1 UInt64 64 0 2^64 - 1 Int128 ✓ 128 -2^127 2^127 - 1 UInt128 128 0 2^128 - 1 Bool N/A 8 false (0) true (1) • Floating-point types: 15CHAPTER 5. INTEGERS AND FLOATING-POINT NUMBERS 16 representable by T. • x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of bits in T. In other words, the binary representation is truncated to fit. • exponential function at x expm1(x) accurate exp(x) - 1 for x near zero ldexp(x, n) x * 2^n computed efficiently for integer values of n log(x) natural logarithm of x log(b, x) base b logarithm of x log2(x)0 码力 | 2057 页 | 7.44 MB | 3 月前3
共 29 条
- 1
- 2
- 3













