积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(177)C++(150)云计算&大数据(25)系统运维(20)Python(15)Django(13)网络与安全(12)VirtualBox(11)Julia(10)数据库(8)

语言

全部英语(195)中文(简体)(24)中文(繁体)(10)zh(4)英语(2)日语(1)ro(1)

格式

全部PDF文档 PDF(202)TXT文档 TXT(13)DOC文档 DOC(9)其他文档 其他(7)PPT文档 PPT(6)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 237 个.
  • 全部
  • 后端开发
  • C++
  • 云计算&大数据
  • 系统运维
  • Python
  • Django
  • 网络与安全
  • VirtualBox
  • Julia
  • 数据库
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 英语
  • 日语
  • ro
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • DOC文档 DOC
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • text文档 SVG Test Document

    0 码力 | 5 页 | 11.74 KB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    USA-Based LLM: Total Current Users Outside North America Note: LLM data is for monthly active mobile app users. App not available in select countries, including China and Russia, as of 5/25. Source: included in East Asia figures. Data for standalone app only. Source: Sensor Tower (5/25) 5/23 4/25 Mobile App Monthly Active Users, MM Details on Page 315 AI & Work Evolution = Real + Rapid 8 USA → More Note: PC units as of 2000. Desktop internet users as of 2005, installed base as of 2010. Mobile internet units are the installed based of smartphones & tablets in 2020. Cloud & data center capex
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    specific tasks within larger systems ◮ Applications: ◮ Consumer electronics (e.g. mobile phones, VR headsets) ◮ Home automation (e.g. thermostats) ◮ Medical equipment (e.g. pacemakers) ◮ Characteristics: Python, on a laptop Dataset Train duration Model size (MB) Small 2m15s 23 Big 7m10s 23 36 / 50Test the Rock-Paper-Scissors model ◮ Using the testing data of the big dataset (124 images per class)
    0 码力 | 51 页 | 1.78 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    fine-tune your models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work As an AI development lifecycle can multiply 
 AI dividends. 07 Set bold 
 automation goals Most processes involve a lot of rote work, ripe for automation. Aim high. Let’s drill down into each of these, with customer dramatically reduced search time; and advisors spend more time on client relationships, thanks to task automation and faster insights. The feedback from advisors has been overwhelmingly positive. They’re more
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Plug-in Based Software Architecture for Robotics

    core system 6Why use plugin architecture? ● More testable code ○ Interface can be mocked to test core system ○ Plugins can be individually tested ● Simplifies integration ○ Core system has a well 58Kinematics 59Kinematics 60 Plugins built on top of ● TrackIK ○ TRACLabs, Inc. Robotics and Automation ● KDL ○ Kinematics and Dynamic Library ● BioIK ○ Philipp Ruppel as part of his Master Thesis through shared_library class ○ Tutorials ● POCO ○ SharedLibrary class ● Qt Plugins ○ Expand Qt UI application. 66● Plugins have to compiled with the same or compatible compiler as the core system
    0 码力 | 75 页 | 2.40 MB | 5 月前
    3
  • pdf文档 Boosting Software Efficiency

    not enough memory allocation fails accessing null uncontrolled reset Q.E.D 43 Wrong!I needed to test my assumptions… 4445 Memory Profiler I couldn’t use standard memory profilers as the Linux kernel day) per unitUse the data you already have 156 Be proactive!Testing 157TESTING 158 ⊡ Rewrote the test paper from manual tests to automatic tests. ⊡ Implemented the automated tests. □ Two pipelines pipelines – long and short tests. □ 24/7 - to stabilize the tests. E2E tests:TESTING 159 ⊡ Rewrote the test paper from manual tests to automatic tests. ⊡ Implemented the automated tests. □ Two pipelines
    0 码力 | 180 页 | 1.65 MB | 5 月前
    3
  • pdf文档 Building Effective Embedded Systems: Architectural Best Practices

    Flexible Timing (5-10 milliseconds) ❖ ! A guaranteed response time ❖ Milliseconds ❖ Home automation Hard/Soft Real Time RequirementsWhat level of time precision does our system require?What level logic layer from the hardware layer Application Layer Drivers handling LayerHow are we going to test it?Probably, we’re not…Logic GetNextTrafficLightLogic SetTrafficLightLogic Hardware SetTrafficLightA scenarios that would be difficult to test in real lifeInterfaces simulator Load simulator The simulator allows us to replicate scenarios that would be difficult to test in real lifeSimulator #1Communication
    0 码力 | 241 页 | 2.28 MB | 5 月前
    3
  • word文档 The DevOps Handbook

    Netflix twice in 18 month span. He wasn’t fired, he had also helped move their operations and automation forward by “light-years” and had performed huge number of production deployments. g. INJECT PRODUCTION CHAT BOTS TO AUTOMATE AND CAPTURE ORGANIZATIONAL KNOWLEDGE i. ChatOps pioneered at GitHub – put automation tools (Hubot) into the middle of their chatrooms 1. Everyone saw everything that was happening PRACTICE i. Ensure automated tests demonstrate use and behavior of libraries and components ii. Test suite becomes the living documentation of the system specification and represent working examples
    0 码力 | 9 页 | 25.13 KB | 5 月前
    3
  • word文档 DevOps Meetup

    optimization.  Environment homogenization and assimilation – no snowflakes  Deployment methodologies, automation, monitoring, and management tested continuously. Steve Barr steve.barr@csgi.com @srbarr1 Overall technical learning.  How we need to improve  Sharing ideas, code, Community of Practice, etc.  Test Driven Infrastructure  Blue – green deployments  Combining DevOps Scrum – planning, standups Scrum, Craig Larman  Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Jez Humble and David Farley  The Phoenix Project: A Novel About IT, DevOps, and Helping
    0 码力 | 2 页 | 246.04 KB | 5 月前
    3
  • word文档 The DevOps Handbook

    Means Eliminating IT Operations, or “NoOps” f. Myth—DevOps is Just “Infrastructure as Code” or Automation: g. Myth—DevOps is Only for Open Source Software: 2. Foreword xix 3. Imagine a World Where constraint usually follows this progression: a. Environment creation: b. Code deployment: c. Test setup and run: d. Overly tight architecture: iv. ELIMINATE HARDSHIPS AND WASTE IN THE VALUE STREAM Dev teams to spend more time building functionality, as opposed to created infrastructure ii. Automation – across the board iii. Create known, good environments that are ready for production b. EMBED
    0 码力 | 8 页 | 22.57 KB | 5 月前
    3
共 237 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 24
前往
页
相关搜索词
SVGTestDocumentTrendsArtificialIntelligenceLeveragingthePowerofC++forEfficientMachineLearningonEmbeddedDevicesOpenAIAIinEnterprisePlugBasedSoftwareArchitectureRoboticsBoostingEfficiencyBuildingEffectiveSystemsArchitecturalBestPracticesTheDevOpsHandbookMeetup
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩