积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(13)Julia(10)Python(2)Tornado(2)数据库(1)综合其他(1)人工智能(1)Rust(1)

语言

全部中文(繁体)(10)英语(4)中文(简体)(1)

格式

全部PDF文档 PDF(14)其他文档 其他(1)
 
本次搜索耗时 0.969 秒,为您找到相关结果约 15 个.
  • 全部
  • 后端开发
  • Julia
  • Python
  • Tornado
  • 数据库
  • 综合其他
  • 人工智能
  • Rust
  • 全部
  • 中文(繁体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer 2/24 2/25 4/25 75% 60% 10% 21% 15% 0% Details on Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    ingestion from structured, semi-structured and unstructured sources (IoT, logs, event streams). Multi-model storage optimization supporting relational, time-series, JSON, geospatial, full-text, and vector data designed with AI in mind, offering capabilities such as vector search, similarity detection, and instant model updates for AI workloads. It can process data in a way that supports real-time, AI-driven insights platform capable of handling a wide range of use cases, from real-time analytics and search to AI model serving and predictive maintenance. 5.5 In a Nutshell By offering a Real-Time Unified Data Layer
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 julia 1.10.10

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" level using the @atomic, @atomicswap, and @atomicreplace macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" level using the @atomic, @atomicswap, and @atomicreplace macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomicreplace macros, and @atomiconce macros.CHAPTER 25. MULTI-THREADING 326 Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomicreplace macros, and @atomiconce macros.CHAPTER 25. MULTI-THREADING 326 Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomicreplace macros, and @atomiconce macros.CHAPTER 25. MULTI-THREADING 326 Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    combinations of argument types, and applied by dis- patching to the most specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first argument to "own" @atomic, @atomicswap, @atomicreplace macros, and @atomiconce macros. Specific details of the memory model and other details of the design are written in the Julia Atomics Mani- festo, which will later be it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceRealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAIjulia1.1010Julia1.11DocumentationReleaseNotes1.13DEV1.12RC1Beta4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩