积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(13)综合其他(10)人工智能(10)Julia(10)Python(2)Tornado(2)系统运维(1)Rust(1)网络与安全(1)

语言

全部中文(繁体)(10)zh(5)英语(4)[zh](1)fj(1)日语(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(22)DOC文档 DOC(1)其他文档 其他(1)
 
本次搜索耗时 0.303 秒,为您找到相关结果约 24 个.
  • 全部
  • 后端开发
  • 综合其他
  • 人工智能
  • Julia
  • Python
  • Tornado
  • 系统运维
  • Rust
  • 网络与安全
  • 全部
  • 中文(繁体)
  • zh
  • 英语
  • [zh]
  • fj
  • 日语
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM@Alibaba AI Labs

    Labs 阿里巴巴人工智能实验室 AiILabs & TVM PART 1 : ARM32 CPU CONTENT PART 2 : HIFI4 DSP PART 3 : _ PowervVR GPU [和| Alibaba AL.Labs 阿里巴巴人工智能实验室 ARM 32 CPU Resolution Quantization Orize Kernel ALIOS ent pl 1=int8 int8 * int8 int32 = int16 1 + int16 x int8 Alibaba Al.Labs 阿里巴巴人工智能实验室 CPU : MTK8167S (ARM32 A35 1.5GHz) Model : MobileNetV2_ 1.0_ 224 400 336 350 3丈 300 250
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    20% 40% 60% 80% 100% VGG16 ResNet-50 GoogleNet-V3 Aristotle on 7020 FPGA Iphone8plus Kirin 970 CPU MEM CONTROLLER BUS Data Mover IMG WR SCHEDULER WEIGHTS WR SCHEDULER SMART MEM FABRIC IMG RD Efficiency > 50% for mainstream neural networks >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph TVM Partitioning >> 7 Subgraph 1 Parallel Subgraphs Post-Processing Pre-Processing FPGA or CPU FPGA CPU CPU FPGA - More than supported/not supported, pattern matching graph colorization - Choices how
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    TVMQ@Alios AIOS ! 驱动万物智能 PRESENTATION AGENDA 人 人 e 人 e@ TVM Q@ AliOs Overview TVM @ AliOs ARM CPU TVM @ AliOos Hexagon DSP TVM @ Alios Intel GPU Misc /NiiOS ! 驱动万物智能 PART ONE TVM Q@ AliOs Overview Multimodal Interection CPU (ARM、Intel) 1驱动万物智能 Accelerated Op Library / Others Inference Engine DSP (Qualcomm) PART TWO Alios TVM @ ARM CPU AiOS 1驱动万物智能 Alios TVMQOARM CPU 。 Support TFLite ( Open Open Source and Upstream Master ) 。, Optimize on INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 * Cache 芍四 Data FO Data FOData … QNNPACK Convolution 。,NHWC layout Cach, 浆百
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    build_extern(mod, “dnnl”) 4. Run the inference exe = relay.create_executor(“vm”, mod=mod, ctx=tvm.cpu(0)) data = np.random.uniform(size=(1, 3, 224, 224)).astype(“float32”) out = exe.evaluate()(data, **params) Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement an operator-level annotator, OR 2. Implement Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement extern operator functions, OR 2. Implement
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Julia 1.11.4

    Memory-mapped I/O 1615 83 Network Options 1618 84 Pkg 1622 85 Printf 1626 86 Profiling 1629 86.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629 86.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    Memory-mapped I/O 1615 83 Network Options 1618 84 Pkg 1622 85 Printf 1626 86 Profiling 1629 86.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629 86.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    Memory-mapped I/O 1615 83 Network Options 1618 84 Pkg 1622 85 Printf 1626 86 Profiling 1629 86.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629 86.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    Memory-mapped I/O 1679 85 Network Options 1682 86 Pkg 1686 87 Printf 1690 88 Profiling 1693 88.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1693 88.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    Memory-mapped I/O 1677 85 Network Options 1680 86 Pkg 1684 87 Printf 1688 88 Profiling 1691 88.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1691 88.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 Beta4

    Memory-mapped I/O 1676 85 Network Options 1679 86 Pkg 1683 87 Printf 1687 88 Profiling 1690 88.1 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1690 88.2 Via multi-threading provides the ability to schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on a single as part of the standard library shipped with Julia. Most modern computers possess more than one CPU, and several computers can be combined together in a cluster. Harnessing the power of these multiple
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TVMAlibabaAILabsXDNNNov2019AliOSBringYourOwnCodegentoJulia1.11DocumentationReleaseNotesjulia1.13DEV1.12RC1Beta4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩