积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)Julia(10)Python(2)Tornado(2)数据库(1)综合其他(1)人工智能(1)

语言

全部中文(繁体)(10)英语(4)

格式

全部PDF文档 PDF(13)其他文档 其他(1)
 
本次搜索耗时 0.301 秒,为您找到相关结果约 14 个.
  • 全部
  • 后端开发
  • Julia
  • Python
  • Tornado
  • 数据库
  • 综合其他
  • 人工智能
  • 全部
  • 中文(繁体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified Data Layer? 3. Why Do experiences and ensure performance. 32. The Interconnection of Analytics, Search, and AI Analytics, search, and AI are deeply interconnected in how they process, interpret, and extract value from data information, enhancing discoverability, accelerating decision-making, and improving operational efficiency. AI acts as the intelligence layer, optimizing both search and analytics by making them faster, smarter
    0 码力 | 10 页 | 2.82 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    IntelligenceTrends – Artificial Intelligence (AI) May 30, 2025 Mary Meeker / Jay Simons / Daegwon Chae / Alexander Krey2 Context We set out to compile foundational trends related to AI. A starting collection of several ’ At the time, the pace of change catalyzed by the internet was unprecedented. Consider now that AI user and usage trending is ramping materially faster…and the machines can outpace us. The pace and OpenAI’s ChatGPT with its extremely easy-to-use / speedy user interface. In addition, relatively new AI company founders have been especially aggressive about innovation / product releases / investments
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Tornado 6.5 Documentation

    argument has the same meaning as for socket.listen(). flags is a bitmask of AI_* flags to getaddrinfo, like socket.AI_PASSIVE | socket.AI_NUMERICHOST. reuse_port option sets SO_REUSEPORT option for every socket can be used to pass additional flags to getaddrinfo. • tornado.netutil.bind_sockets no longer sets AI_ADDRCONFIG; this will cause it to bind to both ipv4 and ipv6 more often than before. • tornado.netutil HTTPServer can now be run on a unix socket as well as TCP. • Fixed exception at startup when socket.AI_ADDRCONFIG is not available, as on Windows XP IOLoop and IOStream • IOStream performance has been
    0 码力 | 272 页 | 1.12 MB | 3 月前
    3
  • epub文档 Tornado 6.5 Documentation

    socket.listen]. flags is a bitmask of AI_* flags to getaddrinfo [https://docs.python.org/3/library/socket.html#socket.getaddrinfo], like socket.AI_PASSIVE | socket.AI_NUMERICHOST. reuse_port option sets that can be used to pass additional flags to getaddrinfo. tornado.netutil.bind_sockets no longer sets AI_ADDRCONFIG; this will cause it to bind to both ipv4 and ipv6 more often than before. tornado.netutil HTTPServer can now be run on a unix socket as well as TCP. Fixed exception at startup when socket.AI_ADDRCONFIG is not available, as on Windows XP IOLoop and IOStream IOStream performance has been improved
    0 码力 | 437 页 | 405.14 KB | 3 月前
    3
  • pdf文档 julia 1.10.10

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * biCHAPTER 12. METHODS 163 ## this is insufficient because it assumes `one(eltype(a))` `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * biCHAPTER 12. METHODS 163 ## this is insufficient because it assumes `one(eltype(a))` `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/pCHAPTER 79. LINEAR ALGEBRA 1517 with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/pCHAPTER 79. LINEAR ALGEBRA 1517 with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi)CHAPTER 13. METHODS 172 # this is wrong, since depending on the return value # of type-inference length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/pCHAPTER 79. LINEAR ALGEBRA 1517 with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
RealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAITrendsArtificialIntelligenceTornado6.5Documentationjulia1.1010Julia1.11ReleaseNotes1.13DEV
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩