CurveFS ChunkID持久化chunkid 持久化© XXX Page 2 of 3 1. 2. 3. 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 1. 1. 1. 2. 1. 2. 3. 4. 3. 2. 背景 将原有的获取chunkid的方法从space迁入mds中,并持久化写入etcd中; 只考虑单 ChunkIDGenerator 类对象,方法 AllocateS3Chunk 调用 ChunkIDGenerator对象的GenChunkID方法; ChunkIDGenerator 类 构造函数 初始化 init 函数:用于初始化或者更改 ChunkIdAllocatorImpl 的一些配置。但是这些配置不会立即生效,而是等到当前 chunkId池枯竭时才会生效。 析构函数 GenChunkID 申请的chunkID池是否枯竭?0 码力 | 3 页 | 79.38 KB | 6 月前3
Curve文件系统元数据持久化方案设计© XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+------------+-----+----- -----+----------------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当0 码力 | 12 页 | 384.47 KB | 6 月前3
新一代云原生分布式存储新一代云原生分布式存储—Curve 上 李小翠 网易数帆存储团队分布式存储介绍 01 存储的发展 | 分布式存储的分类 | 分布式存储的要素 02 03 04 Ceph 架构简介 | 场景介绍 | 使用中的问题 Curve 架构简介 | 数据对比 | 应用情况 FAQ 答疑存储的发展 互联网时代,数据大爆炸 大型主机 成本高 单点问题 扩容困难 各存储设备通过网络互联 各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 •磁盘故障、机器故障、网络故障概率性发生 有什么 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力 以达到高可靠、高可用、高可扩分布式存储的要素 要 素 拆 解 数据分布 —— 无中心节点/中心节点 均 衡 地址空间的每段数据会分布在不同机器的磁盘上,如 何找到这些数据? 可靠性 & 可用性 —— 多副本/EC 服务不可用时 间 数据一致性0 码力 | 29 页 | 2.46 MB | 6 月前3
Curve文件系统元数据管理文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page 3 of 24 inode → hashtable(key是ino,全局) dentry → skip list (key是name,每个目录下一个) 计算出来的 binlog,随时间会越来越大 差 DG Master/Slave glusterfs 无中心化服务器 dht算法 hash 扩展时大量迁移 client缓存 inode→ hashtable(gfid) dentry→ hashtable(name) 分别从不同场景上进行分析,curve文件系统的元数据应该有以下的操作: 1、系统加载的时候,元数据从持久化介质加载。 2、业务运行过程中,元数据的增删改查。 3、系统退出的时候,元数据持久化。© XXX Page 7 of 24 场景一:系统加载的时候,元数据从持久化介质中加载。 元数据进行恢复的时候,有两种情况。 一种系统必须等到元数据全部加载到内存才能提供服务,这种情况0 码力 | 24 页 | 204.67 KB | 6 月前3
Curve核心组件之mds – 网易数帆Curve核心组件之 MDS 陈威Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查 • 快照克隆服务器MDS各个组件 MDS是中心节点,负责元数据管理、集群状态收集与调度。MDS包含以下几个部分: • Topology: 管理集群的 topo 元数据信息。 • Nameserver: 管理文件的元数据信息。 • Copyset: the Frequency of Data Loss in Cloud Storage」提出。 在 Curve 系统引入 CopySet 有几个目的: 1. 减少元数据量:如果为每个Chunk去保存复制组成员关系,需要至少 ChunkID+3×NodeID=20 个byte,而如 果在Chunk到复制组之间引入一个CopySet,每个Chunk可以用ChunkID+CopySetID=12个byte。0 码力 | 23 页 | 1.74 MB | 6 月前3
MySQL 兼容性可以做到什么程度MySQL 兼容性可以做到什么程度 胡中泉(舟济) 阿里云数据库解决方案架构师为什么要兼容 MySQL 01 The longer you look back, the farther you can look forward.也从阿里巴巴的“去IOE”运动说起 业务驱动下的分布式技术实践之路 5月17日,支付宝最后一台小型 机下线标志去IOE落下帷幕 首次双十一大考卡顿半分钟后稳 定度过 无法弹性扩展 成本高 去 IOE 商品库去O TDDL首次双十一 “去IOE完成” 天价账单 上云 2009 2011 2012 2013 2013 2015 TDDL 以中间件形态在阿里云上 发布: DRDS Oracle根据双十一350的交易量, 反推出了天价账单也谈所谓的“中间件” 中间件只是起点,PolarDB-X 可能是离终点最近的那个 对近十年的探索以及五年的上云 经验进行重新思考,面向未来设 经验进行重新思考,面向未来设 从运维视角实现计算存储一体化 计新架构 产品形态 基于MySQL XA实现分布式事务 基于外部组件进行扩容 支持扩容 分布式事务 一体化尝试 Review 2.0 开源 2016 2017 2018 2019 2020 2021 2021年10月20日,云栖大会宣 布开源 2020年5月,PolarDB-X 完成架 构和品牌升级怎么做兼容:以 CDC 为例 020 码力 | 18 页 | 3.02 MB | 6 月前3
Curve设计要点新一代分布式存储系统 Curve 李小翠Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多,线上异常演练 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: 总体设计 系统特性 近期规划背景 • 多个存储软件:SDFS、NEFS、NBS • 已有的开源软件:Ceph • 不能胜任性能、延迟敏感的场景 • 异常场景抖动较大(比如慢盘场景) • 去中心节点设计在集群不均衡的情况下需要人工运维 • 基于通用分布式存储构建上层存储服务背景 01 02 03 04 总体设计 系统特性 近期规划基本架构 • 元数据节点 MDS 管理元数据信息 prometheus + grafana 可视化 • 每日报表 • 丰富的数据定位问题易运维 • 丰富的metric体系 • prometheus + grafana 可视化 • 每日报表 • 丰富的数据定位问题 • 集群状态查询工具 • curve_ops_tool • 自动化部署工具 • 一键部署,一键升级高质量 • 良好的模块化和抽象设计 • 完善的测试体系 • 单元测试0 码力 | 35 页 | 2.03 MB | 6 月前3
CurveFS方案设计开发计划及安排 背景 为更好的支持云原生的场景,Curve需要支持高性能通用文件系统,其中高性能主要是适配云原生数据库的场景。当前Curve是实现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构,元数据内存结构,元数据持久化,调研文档如下: chubaofs: 要怎样的元数据节点的性能? 可行性分析 方案对比 根据上述调研和测试结果,我们考虑了三种curvefs的元数据设计方案: CurveFS kv方案设计 curve实现块设备时,元数据不是扁平化的设计,而是采用来有目录层级的 namespace 方式,namespace 已经实现了 fs 元数据管理的雏形,具备了基本的元数据管理功能。(当时为什么要设计为 namespace 的管理形式?留有租户这个概念),直接基于 依赖于第三方kv存储,目前是etcd CurveFS 单机内存元数据设计 类似 fastcfs 和 moosefs 的元数据设计方式,采用通用的 dentry,inode 两层映射关系,所有的元数据都缓存在内存中,持久化在 binlog 文件中,binlog采用定期dump的方式删除。基于这种方式的开发: a. 性能 加载:数据量较大的情况下,元数据节点启动较慢;但是元数据使用 master-slave 可以降低0 码力 | 14 页 | 619.32 KB | 6 月前3
CurveFS Copyset与FS对应关系partition和data partition。meta partition管理的元数据,data partition管理数据。meta partition管理inode和dentry信息。 创建一个文件系统时,如何初始化meta partition? master\cluster.go, chubaofs的文件系统使用volume的来表示,在创建一个文件系统的时候,会创建3个meta partition和10个data id。创建meta partition的时候,选择的3个meta node组成一个复制组。如何选择?论文上写的是按照存储节点的memory和disk usage来选的,通常选择内存和disk使用率最低的节点。 并去对应的meta node上去创建对应的meta partition。 如何选择partition的host,通过这个函数去选择。 func (c *Cluster) (excludeZone robin的方式,遍历尝试去所有的partition中,直到找到一个partition可以创建inode。 创建dentry,去parent inodeid所在的meta partition进行创建就好了。 查找inode和partition的时候,通过inodeid去查询应该由哪个partition进行处理。inode是拿着inodeid查询,dentry是拿着parent的inode id去查询。© XXX0 码力 | 19 页 | 383.29 KB | 6 月前3
PolarDB开源生态介绍 - 杭州Meetup 2022.10.15PolarDB开源生态介绍 阿里云 digoal为什么开源是未来?阿里巴巴开源缩略图数据库开源大图PolarDB开源云原生分布式数据库家族 : 兼容MySQL&PostgreSQL用户 生态伙伴 人才 降本提效 团队成长 商业服务 用户合作 • 联合实验室 PolarDB云原生分布式开源数据库产品 高校合作 • 课程合作 • 科研项目合作 • 工作组 高校 协同育人、教学优化成果 商业服务 使用开源 PolarDB 开源学习 开源共建 人才招聘 产品适配 OxM 源码兜底 技术领先 PolarDB开源生态 共建模式 国产化替代 应用软件 适配迁移 生态伙伴集成 • 云市场、云速搭 • 创新中心SaaS市场 • 云起实验室 接入云端销售 数据价值放大 • 基础设施 • 安全 • 管理维护 • 数据集成 • 开发协同 • ISV • 培训育人 •0 码力 | 7 页 | 1.45 MB | 6 月前3
共 30 条
- 1
- 2
- 3













