大模型时代下向量数据库的设计与应用队; • 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 LLM训练数据多来源于公开渠道,无法接触到私域数据,对特定领域的生成任务质量不高。 • 长期记忆 - LLM本身却没有长期记忆能力,对长时间交互的上下文 Query LLM Response 检索增强生成(RAG) • 将辅助增强数据通过embedding过程转换为向量,加载到向量数据库中并做索引 • 对每个用户输入同样通过embedding过程得到向量,从向量数据库中搜索距离相近数据 • 将这些辅助数据与用户输入同时输入给大模型之后输出0 码力 | 28 页 | 1.69 MB | 1 年前3
共 1 条
- 1













