积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(16)Python(16)ORM(16)

语言

全部英语(16)

格式

全部PDF文档 PDF(8)其他文档 其他(8)
 
本次搜索耗时 0.081 秒,为您找到相关结果约 16 个.
  • 全部
  • 后端开发
  • Python
  • ORM
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 peewee Documentation Release 1.0.0

    Suppose you cache counts of tweets for every user in a special table to avoid an expensive COUNT() query. You want to update the cache table every time a user tweets, but do so atomically: cache_row = CacheCount CacheCount.get(user=some_user) update_query = cache_row.update(tweet_count=F('tweet_count') + 1) update_query.execute() Aggregating records Suppose you have some blogs and want to get a list of them along @connect(post_save, sender=MyModel) def on_save_handler(model_class, instance, created): put_data_in_cache(instance.data) The following signals are provided: pre_save Called immediately before an object
    0 码力 | 101 页 | 163.20 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 1.0.0

    Suppose you cache counts of tweets for every user in a special table to avoid an expensive COUNT() query. You want to update the cache table every time a user tweets, but do so atomically: cache_row = CacheCount CacheCount.get(user=some_user) update_query = cache_row.update(tweet_count=F(’tweet_count’) + 1) update_query.execute() Aggregating records Suppose you have some blogs and want to get a list of them along @connect(post_save, sender=MyModel) def on_save_handler(model_class, instance, created): put_data_in_cache(instance.data) The following signals are provided: pre_save Called immediately before an object
    0 码力 | 71 页 | 405.29 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.6.0

    # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas={ 'journal_mode': 'wal', 'cache_size': -1024 * 64}) # Connect to a MySQL database SqliteExtDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', # WAL-mode. 'cache_size': -64 * 1000, # 64MB cache. 'synchronous': 0}) # Let the OS manage syncing. PRAGMA statements SQLite allows pragma name and value: db = SqliteDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', 'cache_size': 10000, # 10000 pages, or ~40MB 'foreign_keys': 1, # Enforce foreign-key constraints })
    0 码力 | 377 页 | 399.12 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.6.0

    specific configuration options. from peewee import * # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas={ (continues on next page) 18 Chapter 1. Contents: peewee Documentation, Release 3.6.0 (continued from previous page) 'journal_mode': 'wal', 'cache_size': -1024 * 64}) # Connect to a MySQL database on network. mysql_db = MySQLDatabase('my_app', = SqliteExtDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', # WAL-mode. 'cache_size': -64 * 1000, # 64MB cache. 'synchronous': 0}) # Let the OS manage syncing. PRAGMA statements SQLite allows
    0 码力 | 302 页 | 1.02 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.5.0

    # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas={ 'journal_mode': 'wal', 'cache_size': -1024 * 64}) # Connect to a MySQL database SqliteExtDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', # WAL-mode. 'cache_size': -64 * 1000, # 64MB cache. 'synchronous': 0}) # Let the OS manage syncing. PRAGMA statements SQLite allows pragma name and value: db = SqliteDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', 'cache_size': 10000, # 10000 pages, or ~40MB 'foreign_keys': 1, # Enforce foreign-key constraints })
    0 码力 | 347 页 | 380.80 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.5.0

    * # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas={ 'journal_mode': 'wal', 'cache_size': -1024 * 64}) # Connect to a MySQL database on = SqliteExtDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', # WAL-mode. 'cache_size': -64 * 1000, # 64MB cache. 'synchronous': 0}) # Let the OS manage syncing. PRAGMA statements SQLite allows containing the pragma name and value: db = SqliteDatabase('my_app.db', pragmas={ 'journal_mode': 'wal', 'cache_size': 10000, # 10000 pages, or ~40MB 'foreign_keys': 1, # Enforce foreign-key constraints }) PRAGMAs
    0 码力 | 282 页 | 1.02 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.0.0

    # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas=( ('journal_mode', 'wal'), ('cache_size', -1024 * 64))) # Connect to a MySQL database pragma name and value: db = SqliteDatabase('my_app.db', pragmas=( ('journal_mode', 'WAL'), ('cache_size', 10000), ('mmap_size', 1024 * 1024 * 32), )) PRAGMAs may also be configured dynamically Set cache size to 64MB for current connection. db.pragma('cache_size', -1024 * 64) # Same as above. db.cache_size = -1024 * 64 # Read the value of several pragmas: print('cache_size:', db.cache_size)
    0 码力 | 319 页 | 361.50 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 2.0.2

    @connect(post_save, sender=MyModel) def on_save_handler(model_class, instance, created): put_data_in_cache(instance.data) The following signals are provided: pre_save Called immediately before an object from playhouse.signals import post_save from project.handlers import cache_buster post_save.connect(cache_buster, name=’project.cache_buster’) disconnect([receiver=None[, name=None]]) Disconnect the given – the callback to disconnect • name (string) – a short alias post_save.disconnect(name=’project.cache_buster’) 1.10. Playhouse, a collection of addons 59 peewee Documentation, Release 2.0.0 send(instance
    0 码力 | 65 页 | 315.33 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.4.0

    # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas=( ('journal_mode', 'wal'), ('cache_size', -1024 * 64))) # Connect to a MySQL database pragma name and value: db = SqliteDatabase('my_app.db', pragmas=( ('journal_mode', 'WAL'), ('cache_size', 10000), ('mmap_size', 1024 * 1024 * 32), )) PRAGMAs may also be configured dynamically Set cache size to 64MB for current connection. db.pragma('cache_size', -1024 * 64) # Same as above. db.cache_size = -1024 * 64 # Read the value of several pragmas: print('cache_size:', db.cache_size)
    0 码力 | 349 页 | 382.34 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.1.0

    # SQLite database using WAL journal mode and 64MB cache. sqlite_db = SqliteDatabase('/path/to/app.db', pragmas=( ('journal_mode', 'wal'), ('cache_size', -1024 * 64))) # Connect to a MySQL database pragma name and value: db = SqliteDatabase('my_app.db', pragmas=( ('journal_mode', 'WAL'), ('cache_size', 10000), ('mmap_size', 1024 * 1024 * 32), )) PRAGMAs may also be configured dynamically Set cache size to 64MB for current connection. db.pragma('cache_size', -1024 * 64) # Same as above. db.cache_size = -1024 * 64 # Read the value of several pragmas: print('cache_size:', db.cache_size)
    0 码力 | 332 页 | 370.77 KB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
peeweeDocumentationRelease1.03.63.53.02.03.43.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩