蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎全球敏捷运维峰会 广州站 基于ClickHouse+StarRocks 构建支撑千亿级数据量的高可用查询引擎 演讲人:蔡岳毅 全球敏捷运维峰会 广州站 1. 为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 4 广州站 StarRocks的特点 优点: 1. 支持标准的SQL语法,兼容MySql协议; 2. MPP架构,扩缩容非常简单方便; 3. 支持高并发查询; 4. 跨机房部署,实现最低成本的DR 缺点: 1. 不支持大规模的批处理; 2. 支持insert into,但最理想的是消费Kafka; 全球敏捷运维峰会 广州站 ClickHouse/StarRocks在酒店数据智能平台的架构 query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统; 全球敏捷运维峰会 广州站 StarRocks应用小结 • 发挥分布式的优势,要提前做好分区字段规划; • 支持各种join,语法会相对clickhouse简单很多; • 一个sql可以多处用; • 建立好守护进程以及节点监控;0 码力 | 15 页 | 1.33 MB | 1 年前3
共 1 条
- 1













