3. 数仓ClickHouse多维分析应用实践-朱元解决:通过在users.xml 配置 max_bytes_before_external_sort max_bytes_before_external_group_by 2. 用户并发量一上来,负载太高 解决:目前是在中间加redis缓存0 码力 | 14 页 | 3.03 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎被动缓存; 2. 主动缓存; 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能0 码力 | 15 页 | 1.33 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰部署与监控管理 1 立体监控模型: 监控分层 监控项 敏感度 紧急度 应用层 业务指标,数据异常 低 高 服务层 错误日志 中 中 请求指标 扫描详情 响应耗时 物理层 磁盘IO, 持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景0 码力 | 26 页 | 3.58 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践ES的DSL诧法对用户丌太友好,用户学习成 本高。 Kafka Flink 18 ClickHouse替换ES存储标签数据 ClickHouse Manager负责ClickHouse集群管理、元数据管理以及节点负载协调 tag-generate负责标签数据构建,保存到HDFS(MySQL中存储标签配置信息) tag-loader向ClickHouse发送从HDFS导入标签数据的sql 0 码力 | 32 页 | 1.47 MB | 1 年前3
共 4 条
- 1













