积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(5)ClickHouse(5)

语言

全部中文(简体)(5)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 5 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 4. ClickHouse在苏宁用户画像场景的实践

    可以通过groupBitmapState创建。 13 注:ClickHouse聚合函数有一些函数后缀可以使用: -State:获取聚合的中间计算结果 -Merge:将中间计算结果迚行合幵计算,返回最终结果 -MergeState:将中间计算结果迚行合幵计算,返回合幵后的中间结果 ClickHouse集成RoaringBitmap Bitmap的运算函数集:  构造Bitmap类型  Bitmap自身戒者之间的位运算 • 流失用户:day1 ANDNOT day2 = [1,2] 16 detail_order 聚合为天维度表 留存用户的SQL Bitmap函数 千万级用户, 秒级出结果! Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap 用户画像场景实践 17 用户画像原有的流程及痛点 Hive表 商品数据 用户画像系统常见应用场景 22 丼个栗子: “双11” 就要到了,需要发放10万张家电类优惠券迚行促销: 预估人数 人群画像 用户ID清单 用户画像场景1—预估人数 输入条件 返回结果 场景描述 场景:限量发放10万张家电类优惠券,先预估出符合条件的用户数。 操作:用户指定标签及标签间的逡辑关系,统计出符合标签逡辑的人数。 标签表达式,包含标签、算术运算符、逡辑运算符、括号。
    0 码力 | 32 页 | 1.47 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    … DataNode-3 DataNode-1 指标计算平台 Ø 分布式计算 • 并行计算 Ø 列式存储 • 按需加载减少IO • 可支持大量列 Ø 动态位图索引 • 缓存上次结果 • 成本低、命中率高 核心特点 Bitmap Filter Builder Dynamic Bitmap Index Cache Bitmap Index Generator Execute Executor-3 一切以用户价值为依归 Data Extract Data Representation 20 业务应用实践 iData 2 iData画像服务需要升级 Ø扩展性差 数据导入后结果不支持修改/追加 Ø数据类型有限 数据类型只能支持数字类型 Ø数据量有限 数据量达到10亿级以上查询效率有所降低 Ø单表计算 不能进行多表关联计算 一切以用户价值为依归 21 业务应用实践
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
  • pdf文档 ClickHouse在B站海量数据场景的落地实践

    动态选择的过滤维度和聚合维度。 v 交互式分析延迟要求 (5秒内)。 路径分析 v 选定中⼼事件。 v 按时间窗⼜确定上下游事件。 v 离线Spark与计算出事件路径及相关⽤户id的RBM。 v 离线计算结果导⼊ClickHouse做交互式路径分析。 漏斗分析 v 预定义事件漏⽃ v ⽀持各个事件单独设置过滤条件 v 查询时间跨度最⼤⼀个⽉ v 数据按user id做Sharding,查询下推
    0 码力 | 26 页 | 2.15 MB | 1 年前
    3
  • pdf文档 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎

    根据SQL关键字筛选该字段 query_duration_ms:执行时间 memory_usage:占用内存 read_rows和read_bytes :读取行数和大小 result_rows和result_bytes :结果行数和 大小 以上信息可以简单对比SQL执行效果 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 全球敏捷运维峰会 广州站 ClickHouse应用小结 • 数据导入之前要评估好分区字段;
    0 码力 | 15 页 | 1.33 MB | 1 年前
    3
  • pdf文档 6. ClickHouse在众安的实践

    your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理 追溯与可重现 洞察平台架构 Why Clickhouse? Clickhosue 性能 高效的数据导入和查询性能
    0 码力 | 28 页 | 4.00 MB | 1 年前
    3
共 5 条
  • 1
前往
页
相关搜索词
ClickHouse苏宁用户画像场景实践腾讯clickhouse2019丁晓坤熊峰海量数据落地蔡岳毅基于StarRocks构建支撑千亿数据量可用查询引擎众安
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩