蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎
ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 system.query_log表,记录已经 执行的查询记录 query:执行的详细SQL,查询相关记录可以 ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化; • 是否采用分布式; • 监控好服务器的cpu/内存波动/`system`.query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统; StarRocks应用小结 • 发挥分布式的优势,要提前做好分区字段规划; • 支持各种join,语法会相对clickhouse简单很多; • 一个sql可以多处用; • 建立好守护进程以及节点监控; 全球敏捷运维峰会 广州站 THANK YOU!0 码力 | 15 页 | 1.33 MB | 1 年前32. 腾讯 clickhouse实践 _2019丁晓坤&熊峰
一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 5 部署与监控管理 1 生产环境部署方案: Distributed Shard02 Shard03 Load Balancing 一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt h 一切以用户价值为依归 8 部署与监控管理 1 应用监控-业务指标: 一切以用户价值为依归 9 部署与监控管理 1 服务监控-错误日志: 一切以用户价值为依归 10 部署与监控管理 1 服务监控-请求指标: 一切以用户价值为依归 11 部署与监控管理 1 服务监控-扫描详情: 一切以用户价值为依归 12 部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归0 码力 | 26 页 | 3.58 MB | 1 年前36. ClickHouse在众安的实践
众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Hadoop, JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 消 息 中 间 件 模型、 算法 模版 机器学习平台 Antron 机器人平台 X-Insight 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理 追溯与可重现 ClickHouse 百亿数据性能测试与优化 • 性能瓶颈在硬盘io,实验验证 • 数据分布在三台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~24.28million rows/s • 只用到三块硬盘的io:3*140=420mb/s • 数据分布在六台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~43.60million0 码力 | 28 页 | 4.00 MB | 1 年前3ClickHouse在B站海量数据场景的落地实践
Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 (Rider/Spark/WaterDrop) 实时接入 (BSQL/Saber/Flink 原⽣JDBC,HTTP接⼜ Ø 读写分离 Ø 动态查询缓存 Ø 流量控制 v 监控管理平台: Ø 统计⼤盘 Ø 回归测试 Ø 接⼊评估 Ø 数据迁移 Ø 数据重平衡 v 交互式分析查询:Superset提供即时查询能⼒ v 离线写⼊服务 (Rider) v 实时写⼊服务 (BSQL/Saber) ClickHouse 监控管理平 台 BSQL/Saber 实时写入服务 Rider 离线写入服务0 码力 | 26 页 | 2.15 MB | 1 年前34. ClickHouse在苏宁用户画像场景的实践
精确去重计数性能测试 6 ClickHouse在苏宁使用场景 OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。 运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。 用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap0 码力 | 32 页 | 1.47 MB | 1 年前32. Clickhouse玩转每天千亿数据-趣头条
se集群的规划,可以多套zookeeper集群服务一套clickhouse集群 3.1:zookeeper集群的znode最好能在400w以下(这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求?处理延迟?等等),排队请求太多可能会导致插入失败 我们遇到的问题 关于引擎选择 推荐Replicated*MergeTree引擎 1:安全,数据安全,业务安全0 码力 | 14 页 | 1.10 MB | 1 年前33. 数仓ClickHouse多维分析应用实践-朱元
因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至 本地 Etl服务器 • 通过clickhouse- client将文本导 入ck数据库 clickhouse数据库 数 仓 建 设 01 ck数仓数据模型采用星型模型搭建 02 数 仓 建 设 – 维度表0 码力 | 14 页 | 3.03 MB | 1 年前3
共 7 条
- 1