2. ClickHouse MergeTree原理解析-朱凯由1个UInt8(1字节)整型和2个 UInt32(4字节)整型组成 。 压缩数据块大小 l 单个批次数据 size < 64K 如果单个批次数据小于64K,则继续获取下一批 数据,直至累积到size >= 64K时,生成下一个压缩 数据块。 l 单个批次数据 64K<= size <=1M 如果单个批次数据大小恰好在64K与1M之间,则 直接生成下一个压缩数据块。 l 单个批次数据 size size > 1M 如果单个批次数据直接超过1M,则首先按照1M 大小截断并生成下一个压缩数据块。剩余数据继续依 照上述规则执行。此时,会出现一个批次数据生成多 个压缩数据块的情况。 每个压缩数据块的体积,按照其压缩前的数据字节大小,都被严格的控制在64K~1M之间,其上下限分 别由min_compress_block_size(默认65536)与max_compress_block_size(默认1048576)参数指定。0 码力 | 35 页 | 13.25 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎根据SQL关键字筛选该字段 query_duration_ms:执行时间 memory_usage:占用内存 read_rows和read_bytes :读取行数和大小 result_rows和result_bytes :结果行数和 大小 以上信息可以简单对比SQL执行效果 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 全球敏捷运维峰会 广州站 ClickHouse应用小结0 码力 | 15 页 | 1.33 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践ClickHouse集成Bitmap 用户画像场景实践 8 Bitmap位存储和位计算 每个bit位表示一个数字id,对亍40亿个的用户id,只需要40亿bit位, 约477m大小 = (4 * 109 / 8 / 1024 / 1024) 但是如果使用上述的数据结构存储单独一个较大数值的数字id,会造成空间上的浪费,例如 仅存储40亿一个数值也需要477m的空间。 很多高效的Bitmap计算函数。 稀疏数据,劢态分配 最大存储:4096元素 最大空间:8KB 连续数据,劢态分配 最大存储:65536元素 最大空间:128KB 稠密数据,固定大小 最大存储:65536元素 最大空间:8KB RoaringBitmap原理介绍 丼个栗子: 40亿(0xEE6B2800)这个值如何存入RoaringBitmap,以存入Array0 码力 | 32 页 | 1.47 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘 最新版本的”冷热数据分离”特性,曲线救国0 码力 | 14 页 | 1.10 MB | 1 年前3
共 4 条
- 1













