6. ClickHouse在众安的实践Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GH • 12 cores 24 processors • 内存: 96GB • 硬盘: 1TB 高效云盘,最大IO吞吐量 140MBps 以事业部、入库时间作双分区导入数据 遇到的问题 导入效率: • 原有导入数据方式在百亿级数据下会报Too many partitions for single INSERT 数据分布在六台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~43.60million rows/s • 用到六块硬盘的io:6*140=840mb/s • io吞吐量加倍时,对于冷数据的处理速度是之前的~180% 28 ClickHouse 百亿数据性能测试与优化 • 硬盘存储升级 • 高效云盘 --> SSD + RAID0 • 140MBps -->0 码力 | 28 页 | 4.00 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践多并发加载优化索引加载速度: 日志 日志 v Elastic To ClickHouse迁移,降本增效 v OTEL标准化⽇志采集 v 统⼀scheme⽀持 日志 v ClickHouse较ES写⼊吞吐量提升近10倍 v ClickHouse存储成本为ES的1/3 日志 v ClickHouse中采⽤分表,统⼀schema的设计 v ⽇志查询采⽤类似ES语法,降低⽤户迁移成本 用户行为数据分析0 码力 | 26 页 | 2.15 MB | 1 年前3
共 2 条
- 1













