ClickHouse在B站海量数据场景的落地实践ClickHouse在B站海量数据场景的落地实践 胡甫旺 哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): ClickHouse 监控管理平 台 BSQL/Saber 实时写入服务 Rider 离线写入服务 平台服务 Berserker 数据源管理 交互式 分析查询 Yuuni服务 用户 内核 Map隐式列 v 原⽣Map使⽤Array of Tuple实现 v 原⽣Map查询时需读取⼤量⽆效数据 Map隐式列 v Map隐式列将每个Key存储为独⽴列 v Map隐式列查询时只读取需要的隐式列0 码力 | 26 页 | 2.15 MB | 1 年前3
6. ClickHouse在众安的实践s • io吞吐量加倍时,对于冷数据的处理速度是之前的~180% 28 ClickHouse 百亿数据性能测试与优化 • 硬盘存储升级 • 高效云盘 --> SSD + RAID0 • 140MBps --> ~600MBps, ~4x • 升级后 • ~250s --> ~69s,~3.62x l 数据加热后 ~69s -- > 18s ,~3.8x • ToDos • 优化数据导入流程0 码力 | 28 页 | 4.00 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条2:注意监控zookeeper的指标(排队请求?处理延迟?等等),排队请求太多可能会导致插入失败 我们遇到的问题 关于引擎选择 推荐Replicated*MergeTree引擎 1:安全,数据安全,业务安全 2:升级的时候可以做到业务无感知 3:提升查询的并发度 广告时间0 码力 | 14 页 | 1.10 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰Merger Executor-3 一切以用户价值为依归 Data Extract Data Representation 20 业务应用实践 iData 2 iData画像服务需要升级 Ø扩展性差 数据导入后结果不支持修改/追加 Ø数据类型有限 数据类型只能支持数字类型 Ø数据量有限 数据量达到10亿级以上查询效率有所降低 Ø单表计算 不能进行多表关联计算 一切以用户价值为依归0 码力 | 26 页 | 3.58 MB | 1 年前3
共 4 条
- 1













