数仓ClickHouse多维分析应用实践-朱元clickhouse数仓应用实践 演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维0 码力 | 14 页 | 3.03 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践1 关亍我 苏宁科技集团大数据中心架构师 曾就职亍中兴通讯10+years ,从事大规模分布式系统研发 10+years C++、Java、Go编程经验,熟悉大数据架构、解决方案 ClickHouse Contributor Github: https://github.com/andyyzh Contents RoaringBitmap原理介绍 11 丌仅数据结构设计精巧,而且还有 很多高效的Bitmap计算函数。 稀疏数据,劢态分配 最大存储:4096元素 最大空间:8KB 连续数据,劢态分配 最大存储:65536元素 最大空间:128KB 稠密数据,固定大小 最大存储:65536元素 最大空间:8KB RoaringBitmap原理介绍 丼个栗子: 40亿(0xEE6B2800)这个值如何存 ES的DSL诧法对用户丌太友好,用户学习成 本高。 Kafka Flink 18 ClickHouse替换ES存储标签数据 ClickHouse Manager负责ClickHouse集群管理、元数据管理以及节点负载协调 tag-generate负责标签数据构建,保存到HDFS(MySQL中存储标签配置信息) tag-loader向ClickHouse发送从HDFS导入标签数据的sql0 码力 | 32 页 | 1.47 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 (Rider/Spark/WaterDrop) 实时接入 (BSQL/Saber/Flink 标签圈人 。。。 广告DMP 内容定投 内容分析 日志&Trace 平台 APM ClickHouse as Service v Berserker数据源管理: Ø 建表 Ø 修改表元数据 Ø 表元数据管理 v Yuuni: Ø 屏蔽集群信息 Ø 原⽣JDBC,HTTP接⼜ Ø 读写分离 Ø 动态查询缓存 Ø 流量控制 v 监控管理平台: Ø 统计⼤盘 Ø 回归测试 Ø0 码力 | 26 页 | 2.15 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条mode”,插入失败 分析: clickhouse对zookeeper的依赖还是很重的,有大量的数据需要写到zookeeper上面,数据Part都在 zookeeper上面有个节点与之对应以及表的元数据信息等等. 解决: 1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T 3:做好z0 码力 | 14 页 | 1.10 MB | 1 年前3
6. ClickHouse在众安的实践机器人平台 X-Insight 数据洞察平台 X-Zatlas 数据可视化平台 模板 X-BI 数据探索平台 图像分类 平台 OCR工具 链 X-Farm 异构数据治理、协同平台 元数据管理/数据集市 数据权限管理 | 大数据、流数据建模 | 数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理0 码力 | 28 页 | 4.00 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰小游戏 WEB 游戏 海外 游戏 TDM-SDK 客户端采集 特性 采集 大数据基础 PaaS平台 游戏 营销活动 Dbbinlog 数据库采集 Game DB 数 据 管 理 + 元 数 据 TDBANK 准实时传输管道 Kafka-Pipeline 实时管道 TDW 数据仓库 采 集 存 储 大数据应用 PaaS平台 数据挖掘与内容推荐 PaaS 精准 推荐0 码力 | 26 页 | 3.58 MB | 1 年前3
共 6 条
- 1













