2. ClickHouse MergeTree原理解析-朱凯MergeTree原理解析 朱凯@深圳 2019.10 朱 凯 远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 研发中心 36 能源产业链 l 区域能源管理 l 能源大数据 l 购售电平台 l …… l 智慧组织 l 智慧城市 l 智慧产业 l …… EDT 企业级大数据平台 BAS区块链企业应用服务平台 ECP 企 业 云 平 台 服务(咨询、实施、运维、定制开发、系统集成……) 面向 集团企业 面向 能源行业 面向 社会治理 公司主要客户 海尔集团 东风汽车 中信重工 首创经中 河南省人民医院0 码力 | 35 页 | 13.25 MB | 1 年前3
6. ClickHouse在众安的实践每天被访问超过10次的报表寥寥无几 传统报表访问往往是静态的、高聚合、低频、表单式的 集智平台可视化交互分析 数据加工的链路与数据价值发现 竞争优势 分析成熟度 洞察与应对 预测与行动 源数据 数据清洗 标准报表 OLAP系统 商务智能(BI) 机器学习建模 人工智能优化 发生了什么? 为什么发生? 什么会发生? 什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 大数据、流数据建模 | 数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • ODPS ES 用户标签表 痛点 • 数据查询慢:每个查询需要5~10分钟; • 数据更新慢:更新数据可能需要数天时间; • 不灵活:用户有新标签需求时,需要提需求给标签开发人员排期开发 需求,开发人员开发完再更新到系统中,这时离需求提出可能已经过 去几天,无法及时给到业务人员反馈。 思路 利用clickhouse实时计算的高效性能,对原始数据进行查询分析,从而支 持用户灵活的定义标签并让用户实时得到反馈。0 码力 | 28 页 | 4.00 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践Performance Management) 基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 常驻内存模式对内存消耗很⼤ v ⾮常驻内存模式index load过程慢 v 多并发加载优化索引加载速度: 日志 日志 v Elastic To ClickHouse迁移,降本增效 v OTEL标准化⽇志采集 v 统⼀scheme⽀持 日志 v ClickHouse较ES写⼊吞吐量提升近10倍 v ClickHouse存储成本为ES的1/3 日志 v ClickHouse中采⽤分表,统⼀schema的设计0 码力 | 26 页 | 2.15 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; 全球敏捷运维峰会 广州站 StarRocks的特点 优点: 1. 支持标准的SQL语法,兼容MySql协议; 2. MPP架构,扩缩容非常简单方便; 3. 支持高并发查询; 4. 跨机房部署,实现最低成本的DR 缺点: 1. 不支持大规模的批处理; 2. 支持insert0 码力 | 15 页 | 1.33 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰游戏说 神秘 商店 iData 多维提取 … 游戏数据 驱动场景 潘多拉 社交与功能 用户增长 服务场景 游戏 社区 微信手Q 渠道投放 直播 电竞 … 大数据基础PaaS平台 n 标准化、海量数据接入能力 n 实时化、低延时对接数据应用 n 异构化兼容能力 大数据应用PaaS服务 游戏数据驱动场景 n 实时干预游戏用户 n 精细化、精准化驱动场景服务 n 提升原有服务的增强效果0 码力 | 26 页 | 3.58 MB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至0 码力 | 14 页 | 3.03 MB | 1 年前3
共 6 条
- 1













