数仓ClickHouse多维分析应用实践-朱元clickhouse数仓应用实践 演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维0 码力 | 14 页 | 3.03 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 研发中心 36 个 分支机构 4 多名员工 下属公司 14 年+ 14 上市 千+ 大 家 用优质的产品和服务 推动企业管理和社会进步 产品服务 l 集团资源管理 l l 资产全寿命周期管理 l 集团风险管控 l 企业大数据及商业智能 l 企业云服务 l 智能机器人应用 l 集团IT治理 l …… l 能源产业链 l 区域能源管理 l 能源大数据 l 购售电平台 l …… l 智慧组织 l 智慧城市 l 智慧产业 l …… EDT 企业级大数据平台 BAS区块链企业应用服务平台 ECP 企 业 云 平 台 服务(咨询、实施、运维、定制开发、系统集成……) 服务(咨询、实施、运维、定制开发、系统集成……) 面向 集团企业 面向 能源行业 面向 社会治理 公司主要客户 海尔集团 东风汽车 中信重工 首创经中 河南省人民医院 宏发股份 国家电网 国家电投集团 华能集团 大唐集团 华电集团 电建集团 能建集团 华润电力 中广核 内蒙古电力 浙能集团 陕能集团 中石油 中石化 中冶集团 酒钢集团 中国商飞 厦门航空 南京地铁0 码力 | 35 页 | 13.25 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰ClickHouse 应用实践 丁晓坤 & 熊峰 一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 YES MultiTable 100000 1k 21 29 215 NO MultiTable 100000 10k 9 49 413 NO 一切以用户价值为依归 8 部署与监控管理 1 应用监控-业务指标: 一切以用户价值为依归 9 部署与监控管理 1 服务监控-错误日志: 一切以用户价值为依归 10 部署与监控管理 1 服务监控-请求指标: 一切以用户价值为依归 11 部署与监控管理 1 立体监控模型: 监控分层 监控项 敏感度 紧急度 应用层 业务指标,数据异常 低 高 服务层 错误日志 中 中 请求指标 扫描详情 响应耗时 物理层 磁盘IO, 持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景0 码力 | 26 页 | 3.58 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎为什么选择ClickHouse/StarRocks; 2. ClickHouse/StarRocks的高可用架构; 3. 如何合理的应用ClickHouse的优点,StarRocks 如何来补充ClickHouse 的短板; 4. ClickHouse的调优,运维介绍; 5. 应用总结; 全球敏捷运维峰会 广州站 根据实际业务场景需要来选择 1. 不固定的查询条件,不固定的汇总条件; 2. 1. 被动缓存; 2. 主动缓存; 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 result_rows和result_bytes :结果行数和 大小 以上信息可以简单对比SQL执行效果 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 全球敏捷运维峰会 广州站 ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化; • 是否采用分布式; • 监控好服务器的cpu/内存波动/`system`0 码力 | 15 页 | 1.33 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践35 0.4 0.45 0.5 误差率 精确去重计数性能测试 6 ClickHouse在苏宁使用场景 OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。 运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。 用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 bitmapMin、bitmapMax groupBitmapState Integer 聚合类 groupBitmapAnd groupBitmapOr groupBitmapXor 14 Bitmap应用示例 order_id order_date user_id product_id 1 2019-10-01 1 p1 2 2019-10-01 1 p2 3 2019-10-01 一张简单的订单明细表 detail_order,如何计算用户的日留存? 15 标签 SQL 大表join,count distinct 都比较慢,而且容易 OOM! Bitmap应用示例 order_date uv_bitmap 2019-10-01 {1,2,3} 2019-10-02 {3,4,5} • 留存用户:day1 AND day2 = [3]0 码力 | 32 页 | 1.47 MB | 1 年前3
6. ClickHouse在众安的实践Clickhouse在众安的应用实践 百亿保险数据实时分析探索 众安保险 数据智能中心 蒙强 2019年10月27日 众安保险 • 成立于2013年,是中国第一家互联网保险公司。 • 互联网保险特点: 1. 场景化 2. 高频化 3. 碎片化 • 今年上半年众安上半年服务用户3.5亿,销售保单33.3亿张。 CHAPTER 报表系统的现状 01 数据分析的最直观表现形式:报表 异构数据治理、协同平台 元数据管理/数据集市 数据权限管理 | 大数据、流数据建模 | 数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周0 码力 | 28 页 | 4.00 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): Ø ⽇志&Trace分析 Ø ⽤户⾏为分析(包括事件分析,漏⽃分析,路径分析等)0 码力 | 26 页 | 2.15 MB | 1 年前3
共 7 条
- 1













