6. ClickHouse在众安的实践
CHAPTER 众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Hadoop, JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 消 息 中 间 件 模型、 算法 模版 机器学习平台 Antron 机器人平台 X-Insight • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理0 码力 | 28 页 | 4.00 MB | 1 年前32. 腾讯 clickhouse实践 _2019丁晓坤&熊峰
iData 大数据分析PaaS 实时 分析 多维 分析 画像 分析 … DataMore 大数据应用PaaS 实时 决策 任务 系统 … 排 行 榜 大数据应用 SaaS系统 iData 用户画像 DataMore 月光宝盒 DataMore 任务系统 iData 数据可视化 游 谱 游戏说 神秘 商店 iData 多维提取 … 游戏数据 驱动场景 潘多拉 社交与功能0 码力 | 26 页 | 3.58 MB | 1 年前3ClickHouse在B站海量数据场景的落地实践
v Map隐式列将每个Key存储为独⽴列 v Map隐式列查询时只读取需要的隐式列 Bulkload v 原⽣写⼊⽅式消耗ClickHouse Server资源,影响查询性能 v 实时写⼊任务长期占⽤资源,故障恢复的时间和运维成本较⾼ v 基于中间存储的Bulkload⽅案降低ClickHouse Server压⼒ Bulkload v 基于中间存储的Bulkload可以降低ClickHouse0 码力 | 26 页 | 2.15 MB | 1 年前32. Clickhouse玩转每天千亿数据-趣头条
Clickhouse玩转每天千亿数据 趣头条 王海胜 提纲 • 业务背景 • 集群现状 • 我们遇到的问题 业务背景 基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算0 码力 | 14 页 | 1.10 MB | 1 年前34. ClickHouse在苏宁用户画像场景的实践
Redis 第三方… Spark 用户画像平台 现有的流程: ES中定义标签的大宽表 通过Spark关联各种业务数据,插入到ES大 宽表。 高频查询的画像数据通过后台任务保存到加 速层:Hbase 戒者 Redis 实时标签通过Flink计算,然后写入Redis 用户画像平台可以从ES、Hbase、Redis查 询数据 痛点: 标签导入到ES的时间过长,需要等待各种业0 码力 | 32 页 | 1.47 MB | 1 年前3
共 5 条
- 1