4. ClickHouse在苏宁用户画像场景的实践Bitmap位存储和位计算 每个bit位表示一个数字id,对亍40亿个的用户id,只需要40亿bit位, 约477m大小 = (4 * 109 / 8 / 1024 / 1024) 但是如果使用上述的数据结构存储单独一个较大数值的数字id,会造成空间上的浪费,例如 仅存储40亿一个数值也需要477m的空间。也就是说稀疏的Bitmap和稠密的占用空间相 同。通常会使用一种bitmap压缩算法迚行优化。 Array Container Run Container Bitmap Container 10 RoaringBitmap原理介绍 11 丌仅数据结构设计精巧,而且还有 很多高效的Bitmap计算函数。 稀疏数据,劢态分配 最大存储:4096元素 最大空间:8KB 连续数据,劢态分配 最大存储:65536元素 最大空间:128KB 苏宁如何使用ClickHouse ClickHouse集成Bitmap 用户画像场景实践 17 用户画像原有的流程及痛点 Hive表 商品数据 ElasticSearch 用户数据 交易数据 HBase Redis 第三方… Spark 用户画像平台 现有的流程: ES中定义标签的大宽表 通过Spark关联各种业务数据,插入到ES大 宽表。0 码力 | 32 页 | 1.47 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践⽇均800+万次Select请求 v 应⽤场景包括(不限于): Ø ⽇志&Trace分析 Ø ⽤户⾏为分析(包括事件分析,漏⽃分析,路径分析等) Ø 圈⼈定投 Ø ⼴告DMP(包括统计分析,⼈群预估) Ø 电商交易分析 Ø OGV内容分析 Ø APM (Application Performance Management) 基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-020 码力 | 26 页 | 2.15 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰Shard02 Shard03 Load Balancing 一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt0 码力 | 26 页 | 3.58 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯[SAMPLE BY expr] [SETTINGS name=value, 省略...] 分区键 排序键 主键 index_granularity = 8192 索引粒度 MergeTree的存储结构 数据以分区的形式被组织 , PARTITION BY 各列独立存储, 按ORDER BY 排序 一级索引, 按PRIMARY Key 排序 数据分区 数据的分区规则 l 不指定分区键0 码力 | 35 页 | 13.25 MB | 1 年前3
共 4 条
- 1













