积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)Apache Flink(22)

语言

全部英语(19)中文(简体)(3)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/09: Flow control and load shedding ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers what if the queue grows larger than available memory? • block the producer (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University 2020 Load management approaches 3 ! Load shedder latency constraints that can tolerate approximate results. Slow down the flow of data: • The system buffers excess data for later processing, once input rates stabilize. • Requires a persistent
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    & reconfiguration ??? Vasiliki Kalavri | Boston University 2020 • To recover from failures, the system needs to • restart failed processes • restart the application and recover its state 2 Checkpointing and all required metadata, such as the application’s JAR file, into a remote persistent storage system • Zookeeper also holds state handles and checkpoint locations 5 JobManager failures ??? Vasiliki operator placement • skew and straggler mitigation • Migrate to a different cluster or software version 9 Reconfiguration cases ??? Vasiliki Kalavri | Boston University 2020 Streaming applications
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    Python Version Supported PyFlink Version Python Version Supported PyFlink 1.16 Python 3.6 to 3.9 PyFlink 1.15 Python 3.6 to 3.8 PyFlink 1.14 Python 3.6 to 3.8 You could check your Python version as following: following: 3 pyflink-docs, Release release-1.15 python3 --version Create a Python virtual environment Virtual environment gives you the ability to isolate the Python dependencies of different projects g. venv virtualenv venv # You can also create Python virtual environment with a specific Python version virtualenv --python /path/to/python/executable venv The virtual environment needs to be activated
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Python Version Supported PyFlink Version Python Version Supported PyFlink 1.16 Python 3.6 to 3.9 PyFlink 1.15 Python 3.6 to 3.8 PyFlink 1.14 Python 3.6 to 3.8 You could check your Python version as following: following: 3 pyflink-docs, Release release-1.16 python3 --version Create a Python virtual environment Virtual environment gives you the ability to isolate the Python dependencies of different projects g. venv virtualenv venv # You can also create Python virtual environment with a specific Python version virtualenv --python /path/to/python/executable venv The virtual environment needs to be activated
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Control: When and how much to adapt? Mechanism: How to apply the re-configuration? 3 • Detect environment changes: external workload and system performance • Identify to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Automatic Scaling Control 4 ??? Vasiliki Kalavri | Boston University 2020 The automatic scaling problem 5 Given a logical congestion, back pressure, throughput Policy • Queuing theory models: for latency objectives • Control theory models: e.g., PID controller • Rule-based models, e.g. if CPU utilization > 70% => scale
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Output Operations (1/4) ▶ Push out DStream’s data to external systems, e.g., a database or a file system. ▶ foreachRDD: the most generic output operator • Applies a function to each RDD generated from automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Streamed? • Anything (if you write a serializer/deserializer for it) • Flink has a built-in type system which supports: • basic types, i.e., String, Long, Integer, Boolean, Array • composite types: DataStream control = env.fromElements("DROP", "IGNORE").keyBy(x -> x); DataStream streamOfWords = env.fromElements("data", "DROP", "artisans", "IGNORE") .keyBy(x -> x); control ValueStateDescriptor<>("blocked", Boolean.class)); } @Override public void flatMap1(String control_value, Collector out) throws Exception { blocked.update(Boolean.TRUE); } @Override
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    alerts for abnormal system metrics • Detect invariant violations • Identify outlier tasks Inspired by this paper : “SAQL: A Stream-based Query System for Real- Time Abnormal System Behavior Detection” Boston University 2020 [1, 4, 5, 23, 8, 0, 7] 5 median ‣ We cannot store the entire stream ‣ No control over arrival rate or order f’ ∞ ? Continuously arriving, possibly unbounded data f read write
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    arrival and/or a generation timestamp. • They are produced by external sources, i.e. the DSMS has no control over their arrival order or the data rate. • They have unknown, possibly unbounded length, i DSMS Database Management System • ad-hoc queries, data manipulation tasks • insertions, updates, deletions of single row or groups of rows Data Stream Management System • continuous queries •
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    available cores / threads • Fused operators can share the address space but use separate threads of control • avoid communication cost without losing pipeline parallelism • use a shared buffer for communication • fixed number of random state accesses, 32K L1 cache • the throughput of the non-shared version degrades first State sharing B A Β Α Profitability ??? Vasiliki Kalavri | Boston University 2020
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020FaulttolerancedemoreconfigurationPyFlink1.15Documentation1.16ElasticitystatemigrationPartScalableSparkStreaminginApacheCourseintroductionprocessingfundamentalsoptimizations
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩