积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(18)中文(简体)(1)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    deploying a PyFlink job to production when there are massive Python dependencies. It’s supported to use Python virtual environment in your PyFlink jobs, see PyFlink Dependency Management for more details --python /path/to/python/executable venv The virtual environment needs to be activated before to use it. To activate the virtual environment, run: source venv/bin/activate That is, execute the activate conda create --name venv python=3.8 -y The conda virtual environment needs to be activated before to use it. To activate the conda virtual environment, run: 4 Chapter 1. How to build docs locally pyflink-docs
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    deploying a PyFlink job to production when there are massive Python dependencies. It’s supported to use Python virtual environment in your PyFlink jobs, see PyFlink Dependency Management for more details --python /path/to/python/executable venv The virtual environment needs to be activated before to use it. To activate the virtual environment, run: source venv/bin/activate That is, execute the activate conda create --name venv python=3.8 -y The conda virtual environment needs to be activated before to use it. To activate the conda virtual environment, run: 4 Chapter 1. How to build docs locally pyflink-docs
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages ??? Vasiliki Kalavri | Boston University 2020 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages Naive solution: maintain a hash table ??? Vasiliki University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages Naive solution: maintain a hash table Convert
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    proportion of the stream, e.g. 1/10th 7 search engine query stream Example use-case: Web search user behavior study Q: How many queries did users repeat last month? ??? Vasiliki we can store 1/10th of the stream, we select a stream element i with probability 10%. • We can use a random generator that produces an integer ri between 0 and 9. We then select an input element i we can store 1/10th of the stream, we select a stream element i with probability 10%. • We can use a random generator that produces an integer ri between 0 and 9. We then select an input element i
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    | Boston University 2020 Outcomes At the end of the course, you will hopefully: • know when to use stream processing vs other technology • be able to comprehensively compare features and processing announcements Vasiliki Kalavri | Boston University 2020 Guest Lectures • Learn about real-world use-cases of stream processing in industry • Learn from experts with decades of hands-on experience in the Official Semester Dates 11 Vasiliki Kalavri | Boston University 2020 Final Project You will use Apache Flink and Kafka to build a real-time monitoring and anomaly detection framework for datacenters
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Window sensor readings Vasiliki Kalavri | Boston University 2020 In the DataStream API, you can use the time characteristic to tell Flink how to define time when you are creating windows. The time characteristic streaming execution environment val env = StreamExecutionEnvironment.getExecutionEnvironment // use event time for the application env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) Vasiliki Kalavri | Boston University 2020 Time-based window assigners for the most common windowing use cases: • They assign an element based on its event-time timestamp or the current processing time
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Databases • DBs keep data until explicitly deleted while MBs delete messages once consumed. • Use a database for long-term data storage! • MBs assume a small working set. If consumers are slow, throughput topic, too. • Topic names are represented with URL-like notation and some systems also allow the use of wildcards. 21 Content-based Pub/Sub • Events are grouped according to event properties or contents Processing (CEP) systems 22 Google Cloud Pub/Sub Publishers and Subscribers are applications. 23 Use-cases • Balancing workloads in network clusters • tasks can be efficiently distributed among multiple
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    split merge split When might this be beneficial? ??? Vasiliki Kalavri | Boston University 2020 • Use equivalence transformation rules if the language allows • selection operations are commutative Fused operators can share the address space but use separate threads of control • avoid communication cost without losing pipeline parallelism • use a shared buffer for communication • Fused filters deterministic batch computations on small time intervals • Keep intermediate state in memory • Use Spark's RDDs instead of replication • Parallel recovery mechanism in case of failures 44 input
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    is called a sequence, of length n, of tuples from R. The empty sequence [ ] has length 0. We use t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t. 23 Vasiliki Kalavri | Boston University 2020 Model of departments that satisfy this query However this sum query cannot be expressed without the use of aggregates! 31 Non-blocking SQL Vasiliki Kalavri | Boston University 2020 SQL extensions and University 2020 SQL extensions for streams Why SQL-based approaches? • Ideally, we would like to use the same language for querying both streaming and static data. Requirements (or why SQL is not
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate Kalavri | Boston University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate Kalavri | Boston University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020FilteringsamplingstreamsCourseintroductionWindowstriggersingestionpubsubsystemsStreamingoptimizationslanguagesoperatorsemanticsElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩