积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)Apache Flink(10)

语言

全部英语(9)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 • To recover from failures, the system needs to • restart failed processes • restart the application and recover its state 2 Checkpointing guards the state from failures, but what about process tries to restart the application and how long it waits between restart attempts. 4 TaskManager failures ??? Vasiliki Kalavri | Boston University 2020 • The JobManager is a single point of failure Flink persistent storage system • Zookeeper also holds state handles and checkpoint locations 5 JobManager failures ??? Vasiliki Kalavri | Boston University 2020 When the JobManager fails all tasks are automatically
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 4 Distributed streaming systems will fail • how can we guard state against failures and guarantee correct results after recovery? • how can we ensure minimal downtime and fast order-preserving, reliable message transport, e.g. TCP. • Failures are single-node and fail- stop, i.e. no network partitions or multiple simultaneous failures are considered. • The secondary node uses keep- keep- alive requests to detect primary failures. 7 Vasiliki Kalavri | Boston University 2020 Recovery types 8 Vasiliki Kalavri | Boston University 2020 Recovery types • Precise recovery (exactly-once)
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    stored in the log. • For a topic with replication factor N, we will tolerate up to N-1 server failures without losing any records committed to the log. Vasiliki Kalavri | Boston University 2020 Resources
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    recovery) 5. Combine batch (historical) and stream processing 6. Ensure availability despite failures 7. Support distribution and automatic elasticity 8. Offer low-latency 7 2005 Vasiliki Kalavri
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    in memory • Use Spark's RDDs instead of replication • Parallel recovery mechanism in case of failures 44 input stream time-based micro-batches D-Streams • During an interval, input data received
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    brokers Where do stream processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network • latency and unpredictable
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    every 5 minutes. // streaming DataFrame of schema {time: Timestamp, word: String} val calls = ... val actionHours = calls.groupBy(col("action"), window(col("time"), "1 hour", "5 minutes")) 64 / 79 Late Data
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    message queue, before it is processed by Apache Flink, which then writes the results to a database or calls a downstream system. In such a pipeline, latency can be introduced at each stage and for various
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    whereas if two 0s is the maximum we’ve seen, that indicates 4 distinct elements, … It takes 2r hash calls before we encounter a result with r 0s. 6 ??? Vasiliki Kalavri | Boston University 2020 Is this
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    p1 p2 p3 m m’ C’ A B ??? Vasiliki Kalavri | Boston University 2020 System model: • No failures during snapshotting • FIFO reliable channels: no lost or duplicate messages • Strongly connected
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020HighavailabilityrecoverysemanticsguaranteesIntroductiontoApacheFlinkKafkaprocessingfundamentalsStreamingoptimizationsingestionpubsubsystemsScalableSpark监控应用程序应用程序入门CardinalityfrequencyestimationExactlyoncefaultin
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩