积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)Apache Flink(15)

语言

全部英语(14)中文(简体)(1)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    historical data • batched updates during downtimes, e.g. every night Streaming Data Warehouse • low-latency materialized view updates • pre-aggregated, pre-processed streams and historical data Data append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively high low 5 Vasiliki Kalavri | Boston Boston University 2020 Traditional DW vs. SDW Traditional DW SDW Update Frequency low high Update propagation synchronized asynchronous Data historical recent and historical ETL process complex fast and
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • scheduling Objectives • optimize resource utilization or minimize resources • decrease latency, increase throughput • minimize monetary costs (if running in the cloud) Query optimization running might be impractical. • state accumulation and re-partitioning • high-availability and low latency requirements • scheduling overhead Challenges in streaming optimization ??? Vasiliki Kalavri constraints or QoS latency constraints. Batching Process multiple data elements in a single batch A A’ ??? Vasiliki Kalavri | Boston University 2020 43 • Batching trades throughput for latency • It improves
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Watermarks provide a configurable trade-off between results confidence and latency: • Eager watermarks ensure low latency but provide lower confidence • Late events might arrive after the watermark watermark • Slow watermarks increase confidence but they might lead to higher processing latency. Trade-offs 17 Vasiliki Kalavri | Boston University 2020 Periodic: periodically ask the user-defined function
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kafka, RabbitMQ, ... HDFS, JDBC, ... Event logs ETL, Graphs,
 Machine Learning
 Relational, … Low latency,
 windowing, aggregations, ... 2 Vasiliki Kalavri | Boston University 2020 Basic API Concept
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ........................................................................... 14 4.12 Monitoring Latency................................................................................................. records-lag-max > threshold • millisBehindLatest > threshold 4.12 Monitoring Latency Generally speaking, latency is the delay between the creation of an event and the time at which results based which then writes the results to a database or calls a downstream system. In such a pipeline, latency can be introduced at each stage and for various reasons including the following: 1. It might take
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    trades-off result accuracy for sustainable performance. • Suitable for applications with strict latency constraints that can tolerate approximate results. Slow down the flow of data: • The system buffers plan • It detects overload and decides what actions to take in order to maintain acceptable latency and minimize result quality degradation. 7 ??? Vasiliki Kalavri | Boston University 2020 DSMS University 2020 Load shedding decisions • When to shed load? • detect overload quickly to avoid latency increase • monitor input rates • Where in the query plan? • dropping at the sources vs. dropping
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • out-of-sync sources may produce out-of-order streams • can be connected to the network • latency and unpredictable delays • might be producing too fast • stream processor needs to keep up and to a file or database • Consumer periodically polls and retrieves new data • polling overhead, latency? • Consumer receives a notification when new data is available • how to implement triggers? messages, as each partition is read by a single thread What would you use when priority is: - latency but not ordering? - throughput and ordering? 31 How long to keep the log? • Log compaction: a
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • CPU utilization, congestion, back pressure, throughput Policy • Queuing theory models: for latency objectives • Control theory models: e.g., PID controller • Rule-based models, e.g. if CPU utilization scaled and upstream channels • All-at-once • move state to be migrated in one operation • high latency during migration if the state is large • Progressive • move state to be migrated in smaller pieces Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John Liagouris, Timothy Roscoe. Megaphone: Latency-conscious state migration for distributed streaming dataflows. (VLDB 2019). 37
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    migration • minimize communication • keep duration short • minimize performance disruption, e.g. latency spikes • avoid introducing load imbalance • Resource management • utilization, isolation
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    coarse-grained approach than Storm. • Based on consistent global snapshots (inspired by Chandy-Lamport). • Low runtime overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (1/2) ▶ Fault tolerance coarse-grained approach than Storm. • Based on consistent global snapshots (inspired by Chandy-Lamport). • Low runtime overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (1/2) ▶ Fault tolerance coarse-grained approach than Storm. • Based on consistent global snapshots (inspired by Chandy-Lamport). • Low runtime overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (2/2) ▶ Acks sequences
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020StreamingoptimizationsNotionsoftimeprogressIntroductiontoApacheFlinkKafka监控应用程序应用程序入门FlowcontrolloadsheddingingestionpubsubsystemsElasticitystatemigrationPartFaulttolerancedemoreconfigurationScalableSpark
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩