积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)Apache Flink(21)

语言

全部英语(20)中文(简体)(1)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    h be a hash function that maps each stream element into M = log2N bits, where N is the domain of input elements: For each element x, let rank(x) be the number of 0s in the end of h(x): • e.g. elements in the input stream so far and let R be the maximum value of rank(.) seen so far. ??? Vasiliki Kalavri | Boston University 2020 5 Let n be the number of distinct elements in the input stream so far to use multiple hash functions and combine their estimates: • Using many hash functions for a high-rate stream is expensive • Finding many random and independent hash functions is difficult ??? Vasiliki
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the synopsis rather than the entire dataset. 2 Synopsis: a lossy, compact summary of the input stream input stream synopsis maintenance component user queries approximate results ??? Vasiliki Kalavri a set of data elements selected via some random process Samples: the most fundamental synopses input stream add to sample or discard ??? Vasiliki Kalavri | Boston University 2020 How can we select • We can use a random generator that produces an integer ri between 0 and 9. We then select an input element i if ri=0. 8 Q: How many queries did users repeat last month? ??? Vasiliki Kalavri | Boston
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Triggers Vasiliki Kalavri | Boston University 2020 • Practical way to perform operations on unbounded input • e.g. joins, holistic aggregates • Compute on most recent events only • when providing real-time need to specify two window components: • A window assigner determines how the elements of the input stream are grouped into windows. A window assigner produces a WindowedStream (or All WindowedStream Vasiliki Kalavri | Boston University 2020 Window functions define the computation that is performed on the elements of a window • Incremental aggregation functions are applied when an element is added to a
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    actions): 1. Input operations 2. Transformation 3. Output operations 11 / 79 Operations on DStreams ▶ Input operations ▶ Transformation ▶ Output operations 12 / 79 Input Operations ▶ Every input DStream Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations ▶ Every input DStream is associated with a Receiver object. • It receives the data from a source and e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations - Basic Sources ▶ Socket connection • Creates a DStream from text data received over
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Notation (I) Input: a stream of items N: number of items in the stream fe: true frequency of the item e in the input stream f: estimated frequency of item δ: user-defined 5 1 1 2 3 3 3 3 1 2 0 1 1 3 5 input stream ε=0.2 w1 w4 w3 w2 ??? Vasiliki Kalavri | Boston University 2020 Example 8 1 2 2 3 5 5 1 1 2 3 3 3 3 1 2 0 1 1 3 5 input stream ε=0.2 w1 w4 w3 w2 1 2 Vasiliki Kalavri | Boston University 2020 Example 8 1 2 2 3 5 5 1 1 2 3 3 3 3 1 2 0 1 1 3 5 input stream ε=0.2 w1 w4 w3 w2 1 2 2 3 5 w1 1 2 3 5 1 0 2 0 1 0 1 0 f1 ε1 f2 ε2 f3 ε3 f5 ε5 ??? Vasiliki
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    events/s time rate decrease events/s time throughput degradation events/s time rate increase : input rate : throughput Why is it necessary? ??? Vasiliki Kalavri | Boston University 2020 • Ensure result • computation: load in terms of computation • communication: load in terms of flow size in the input channel of each parallel task • Partitioning function performance • space required to implement nodes. n4 In practice, each node is mapped to multiple points on the ring using multiple hash functions. Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 When a
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    of data: • The system buffers excess data for later processing, once input rates stabilize. • Requires a persistent input source. • Suitable for transient load increase. Scale resource allocation: resources are left idle when the input load decreases. ??? Vasiliki Kalavri | Boston University 2020 Load shedding • Load shedding is the process of discarding data when input rates increase beyond system | Boston University 2020 Load shedding as an optimization problem N: query network I: set of input streams with known arrival rates C: system processing capacity H: headroom factor, i.e. a conservative
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    py -o word_count.py python3 word_count.py # You will see outputs as following: # Use --input to specify file input. # Printing result to stdout. Use --output to specify output path. # +I[To, 1] # +I[be PyFlink supports various UDFs and APIs to allow users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & GenericJdbcSinkFunction. ˓→open(GenericJdbcSinkFunction.java:52) at org.apache.flink.api.common.functions.util.FunctionUtils. ˓→openFunction(FunctionUtils.java:34) at org.apache.flink.streaming.api.operators
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    py -o word_count.py python3 word_count.py # You will see outputs as following: # Use --input to specify file input. # Printing result to stdout. Use --output to specify output path. # +I[To, 1] # +I[be PyFlink supports various UDFs and APIs to allow users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & GenericJdbcSinkFunction. ˓→open(GenericJdbcSinkFunction.java:52) at org.apache.flink.api.common.functions.util.FunctionUtils. ˓→openFunction(FunctionUtils.java:34) at org.apache.flink.streaming.api.operators
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    REST API Rich Functions • open(Configuration c) • close() • getRuntimeContext() DataStream> input = … DataStream> smoothed = input.keyBy(0).map(new seconds(10)) ◦EventTimeSessionWindows.withGap(Time.minutes(30)) DataStream input = ... input .keyBy(“key”) .window(TumblingEventTimeWindows.of(Time.minutes(1))) .process(new MyWastefulMax()); public static class MyWastefulMax extends ProcessWindowFunction< SensorReading, // input type Tuple3, // output type String, // key
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020FilteringsamplingstreamsWindowstriggersScalableSparkStreamingFlinkSkewmitigationFaulttolerancedemoreconfigurationFlowcontrolloadsheddingPy1.15Documentation1.16inApache
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩