积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)Apache Flink(15)

语言

全部英语(13)中文(简体)(2)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    different things • last 5 sec • last 10 events • last 1h every 10 min • last user session Window operators 2 Vasiliki Kalavri | Boston University 2020 object MaxSensorReadings { def main(args: 0)))
 .keyBy(_.id) .timeWindow(Time.minutes(1)) .max("temp")
 } } 3 Example: Window sensor readings Vasiliki Kalavri | Boston University 2020 In the DataStream API, you can use the or IngestionTime Vasiliki Kalavri | Boston University 2020 Window operators can be applied on a keyed or a non-keyed stream: • Window operators on keyed windows are evaluated in parallel • Non-keyed
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while the train is in the tunnel • results depend on the processing and aren’t deterministic • Event time • the time when an event actually happened • an event-time window would give you the extra life • results are deterministic and independent of the processing event-times of non-late data Watermark propagation 12 Vasiliki Kalavri | Boston University 2020 13 Event-time update Vasiliki Kalavri | Boston University 2020 1. Watermarks must be monotonically increasing
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    key MovingAverage average = averageState.value(); // create a new MovingAverage (with window size 2) if none exists for this key if (average == null) average = new MovingAverage(2); keyBy() .window(<window assigner>) .reduce|aggregate|process(<window function>) stream. .windowAll(<window assigner>) .reduce|aggregate|process(<window function>) ◦TumblingEventTimeWindows s.withGap(Time.minutes(30)) DataStream input = ... input .keyBy(“key”) .window(TumblingEventTimeWindows.of(Time.minutes(1))) .process(new MyWastefulMax()); public static class
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    FlinkKafkaConsumer The maximum lag in terms of the number of records for any partition in this window. An increasing value over time is your best indication that the consumer group is not keeping up section). 3. Some operators in a streaming topology need to buffer events for some time (e.g. in a time window) for functional reasons. 4. Each computation in your Flink topology (framework or user code), growing state are very application-specific. Typically, an increasing number of keys, a large event-time skew between different input streams or simply missing state cleanup may cause growing state.
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    DStream. 23 / 79 Window Operations (1/3) ▶ Spark provides a set of transformations that apply to a over a sliding window of data. ▶ A window is defined by two parameters: window length and slide interval interval. ▶ A tumbling window effect can be achieved by making slide interval = window length 24 / 79 Window Operations (2/3) ▶ window(windowLength, slideInterval) • Returns a new DStream which is computed based on windowed batches. ▶ countByWindow(windowLength, slideInterval) • Returns a sliding window count of elements in the stream. ▶ reduceByWindow(func, windowLength, slideInterval) • Returns
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    drop? • Window-aware load shedding applies shedding to entire windows instead of individual tuples • When discarding tuples at the sources or another point in a query with multiple window aggregations aggregations, it is unclear how shedding will affect the correctness of downstream window operators. • This approach preserves window integrity and guarantees that the results under shedding will not be approximations shedding measures tuple utility • The method selects tuples to discard by relying on the notion of a window-based concept drift. • The metric is defined by computing a similarity metric across windows.
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    SQuAl Queries are represented in graphical representation using boxes and arrows Tumble Window Tumble Window Join(S1.A = S2.A) S1 S2 7 Vasiliki Kalavri | Boston University 2020 Composite subscription records arrive. • projection, selection, union 14 Vasiliki Kalavri | Boston University 2020 Window Operators • Probably the most important operators in stream processing systems • Almost universally the stream on which computations can be performed 15 Vasiliki Kalavri | Boston University 2020 Window types (I) • Time-based (logical) windows define their contents as a function of time. • average
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    replaces any existing tuple with the same t(A) value to form a new relation state. • as a sliding window with length k in which each subsequence of k tuples represents a relation state in the sequence data channels • operators can accumulate state, have multiple inputs, express event- time custom window-based logic • some systems, like Timely Dataflow support cyclic dataflows and iterations on streams continuously along edges Operators • receive one or more input streams • perform tuple-at-a-time, window, logic, pattern matching transformations • output one or more streams of possibly different
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    g., if ε=0.2, w=5 (5 items per window) • wcur: the current window id • We keep a list D of element frequencies and their maximum associated error. • Once a window fills up, we remove infrequent Kalavri | Boston University 2020 Lossy counting algorithm D = {} // empty list wcur = 1 // first window id N = 0 // elements seen so far Insert step For each element x in wcur: if x ∈ D, increase
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    100 rec 100 recs Observation Window W 0.5s ??? Vasiliki Kalavri | Boston University 2020 16 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Observation Window W 0.5s Instrumentation Metrics Vasiliki Kalavri | Boston University 2020 The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records processed Rprc and records pushed to output Rpsd Vasiliki Kalavri | Boston University 2020 The DS2 model • Collect metrics per configurable observation window W • activity durations per worker • records processed Rprc and records pushed to output Rpsd
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
WindowsandtriggersCS591K1DataStreamProcessingAnalyticsSpring2020NotionsoftimeprogressStreaminginApacheFlink监控应用程序应用程序入门ScalableSparkFlowcontrolloadsheddinglanguagesoperatorsemanticsprocessingfundamentalsSkewmitigationElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩